
Vertex Weighted Feature
Engineering in Machine Learning

Jeff and Debra Knisley

Monday, October 17, 2016

Coming up with features is difficult, time-
consuming, requires expert knowledge. “Applied

machine learning” is basically feature engineering.

— Andrew Ng, Stanford University

• Data Scientists tend to use the “3 v’s”
– High Volume: Extremely Large Datasets

– High Variety: Many types, Highly Complex

– High Velocity: Data so large or occurs so fast that
computational speed is a major issue

• KEY CONCEPT: High Variety is the “driver”
– Kaggle Titanic Tutorial Competition:

• Predict if a given passenger survived

• High variety of passenger features and circumstances

• Small Dataset: 1309 passengers each with 10 features

– But Complexity, Variety often require “High Volume”

Quick Review: “Big Data”

Pedagogical
Challenge:

More High Variety
with only medium

volume.

Big Data Example: Twitter Data

• Easy to collect

– Collected using python tweepy

– Location based (used a box containing ETSU)

Twitter Data

• Easy to collect

– Collected using python tweepy

– Location based (used a box containing ETSU)

• Many features and many with many features

– 'text', 'in_reply_to_status_id_str', 'id', 'contributors',
'in_reply_to_screen_name', 'place', 'retweeted',
'lang', 'truncated', 'geo', 'in_reply_to_user_id_str',
'favorite_count', 'filter_level', 'user',
'in_reply_to_status_id', 'source', 'created_at',
'retweet_count', 'is_quote_status', 'entities',
'favorited', 'id_str', 'coordinates', 'timestamp_ms',
'in_reply_to_user_id'

In 30 minutes, I
collected 1000s of
these from a small
area around ETSU.

This is one tweet.

Twitter Data

• Easy to collect

– Collected using python tweepy

– Location based (used a box containing ETSU)

• Many features and many with many features

• Many ways of “grouping” the data

– Grouping = Nearest Neighbor Network

• By geo: Apartment or Dorm

• By user: All tweets by same user

• By time of day, By hashtag keyword, by @ keyword, …

– Grouping leads to clustering…

 Notice

Twitter Data

• Easy to collect

– Collected using python tweepy

– Location based (used a box containing ETSU)

• Many features and many with many features

• Many ways of “grouping” the data

– Grouping = Nearest Neighbor Network

– Grouping leads to clustering…

• Many questions that can be addressed
– “Happiest” time of day, Academic versus social tweets

– Words associated with “angry” tweets

How to Work With “Big Data”

• Our goal is to understand the process that produces a
data set (data is only a tool for doing so)
– Valid conclusions are those that remain true even if another

data set were to be sampled from that process

– Ultimate Goal: Identify, Explore, and Understand the
topology (= underlying structure) of a process

– Example: Tweet data is about users, not tweets

• Two issues we must continuously address
– Bias: The degree to which sample averages converges to

something other than population averages

– Overfitting: The degree to which results are only true for a
data set and not of the process which produced it

Data is Unstructured

• We are going to structure it for this presentation
(but not necessary – see note very soon!)

– We think of a tweet in terms of its text field

– “Across the yard. [Cam 1] on Sunday, October 16, 2016
@ 2:05:11 PM #CarolinaWx #ClaytonNC”

– “Shirts selling like crazy at Woolly Worm Festival this
weekend in Banner Elk, NC. Want one?”

– “Mom and Dad's dog Ruby says it's Sunday afternoon
... nap time.”

• Let’s vectorize the text fields…

Vectorizing Text Data

• Remove “stop” words (the, a, an, and, or, …)

• Remaining words become features

• Each tweet has count of # of occurrences of
that word

Sunday Worm Nap Crazy Etsu

Observation 1 1 0 0 0 0

Observation 2 0 1 0 1 0

Observation 3 1 0 1 0 0

Enormously Long!!

But most entries
are zeros

Vectorizing Text Data

• Remove “stop” words (the, a, an, and, or, …)

• Remaining words become features

• Each tweet has count of # of occurrences of
that word

• Sparse representation – only store nonzeros

– Data of the form ([row,column], value)

– If no row/column entry, assume value is 0

Sunday Worm Nap Crazy Etsu

Observation 1 1 0 0 0 0

Observation 2 0 1 0 1 0

Observation 3 1 0 1 0 0

Key, value pair

Unstructured data can always be
reduced to key-value pairs, which can

always be considered to be sparse
representations of tensors.

Recommender System

• Result is a recommender system

– Each word has a rating (count) for each tweet, with
a rating of 0 if word does not occur in text field

– Also known as collaborative filtering

• Results produced by identifying groups
(clusters) with similar ratings profiles

– Needed: Measure of Similarity (e.g., cosine)

– Typically, more sophisticated measures needed

• Nearest Neighbor Graph: Two observations are
deemed close based on similarity measure

Question: What are ETSU students
doing on a Sunday Afternoon?

Approach:
1. Cluster the data
2. Vectorize their tweets

Answers: Which words are most frequent within each cluster?

“Laundry”

“Eating”

“Just got back”

“Woolly Worm Festival”

kMeans Clustering based on Geo data:
1. Choose k centers
2. Move centers until intra cluster

distance is minimal.

Issues:
1. Must know number of clusters a priori
2. Everyone is in a cluster
3. Centers may not have meaning

Nearest Neighbor Graphs

• Basis for all machine learning

– Simple to use, and applicable in any situation

– Are the theoretical “structure” produced by high
power, sophisticated algorithms (e.g., Random Forests)

• Classification of unlabeled observation(s)

– Construct k nearest neighbors graph

– Predict classification as majority vote of neighbors

• Regression: Predict value as statistic on neighbors

• Imputing Missing Values: as statistic on neighbors

Spectral Clustering based on Geo data:
1. Construct Nearest Neighbors Graph

(k neighbors or threshold or …)
2. Clustering the Graph

Issues
1. Must guess k (and usually not uniform)
2. Some neighbors may be “far away”

 Does not necessarily
 assign every vertex
 to a cluster!

Two Possible Outcomes

• Explore

• Preprocess

• Data trains a classifier that
works perfectly!

– Often via a “Super algorithm”

– Random forest, Neural Net

– “Black Box” outcome

– What about the process that
produced the data? Our goal
is to understand the process

• Explore

• Preprocess

• Repeated Refinements

– Select/Modify Features

– Train the Algorithm

– Apply Metric(s)

• Predict, interpret, visualize,
etcetera, …

Nearest Neighbor Graphs
• If only we knew precisely what method to use for

similarity and exactly how many neighbors to use for
each node…
– Example: Similarity for predicting age of a passenger on the

Titanic if their age is unknown
– .

– Obtained by repeated refinement based on metrics
– Developed on training data, refined on validation data
– Scored on testing data

• Because not all Features are created equal…

Feature Engineering

• Features (like words in a tweet) are the target

– Feature Selection: Only need a subset of the features

– Dimensionality Reduction: lower dimensional info
(e.g., faces) in higher dimensional data (e.g., images)

– Manifold Reconstruction: Geometric nature
(topology) of the process is inferred from the structure
of the data Feature 1 Feature 2 Feature 3 … Feature n

Weight 0.1 0.9 0.2 … 0.9

Observation 1 # # # … #

Observation 2 # # # … #

Observation m # # # … #

…

…

…

…

…

Feature Engineering

• Suppose we consider the data to be a matrix
Feature 1 Feature 2 Feature 3 … Feature n

Observation 1 # # # … #

Observation 2 # # # … #

Observation m # # # … #

…

…

…

…

…

 

11 12 1

21 22 2

1

1 2

,,

n

n

m m

n

mn

x x x

x x x
X X

x x x

X

 
 
  
 
 







 

 1 1 2 2, , , nw nX WX w X w XX w 

1

2

nw

w

w
W

 
 
 
 
 
 

Feature Weights
as Weighted data

Feature Engineering

• “Powerful Algorithms” often related to “linearly
separable” in some high dim representation

1
1

1 1

1

0 0
0

0

0

0

Feature 1

Feature 2

1
1

1 1

1

0 0
0

0

0

0

Feature 1

Feature 2,
weight = 0

1
1

1 1

1

0 0
0

0

0

0

Feature 1, weight = 0

Feature 2
1

1
1 1

1

0 0
0

0

0

0

Feature 1

Feature 2

Same Nearest
Neighbors Graph

Graph Theory “learns” the underlying
topology of the process the data comes from

Eigenvector
Methods

Clusters are not just “bunches”.

Key is similarity within clusters
being higher than similarity between kNN with k = 5

Spectral Clustering = kNN + Eigenvector Methods

kNN with k = 3

Classifiers, Regressors, Linear Separability, etc.
are based on the process’ topology

kNN with k = 5

Feature Engineering = “digging” (yes, it’s hard
work!) deeper and deeper into the topology

Example: Twitter Data

• Digging deeper means for example
– Discounting tweets sent from the highway

– Associating clusters with types of locations
• Library vs apartment vs dorm vs restaurant

• Using both words and geo data

– Using other fields in the tweet – such as “user”
• A cluster may be a tweet like crazy single user

• What about retweets? What is their significance?

• Digging deeper means the data begins to tell a
story, and we keep going until we know the story

• Often “many stories” in a set of “Big Data”

Our goal is not “Black Box” classifier/regressor perfection,
nor is it a collection of charts and tables with statistical
outcomes and diagrams.

Our goal is to “go deeper and deeper” until we have a
model for the process itself that produces such data.

Feature engineering is “how we go deeper and deeper.”

So how do we do that?
• We can always refine our models

– Make changes, assess with metrics

• Based on improved understanding from previous model

• “Every big data problem is unique” (and ultimately, personal)

– Combine into “bigger models” (ensembles)

– “In machine learning, the best model is all of them.”

• We can always refine our graphs

– Similar to above, but not the same

– Relies on centuries of mathematics – graph theory,
information theory, signal processing, Fourier analysis

– And especially, lots and lots and lots of linear algebra

Lots and Lots of Linear Algebra

• Example: A simple
2 component graph

• Laplacian Matrix:
L = D – A
– 0 is an eigenvalue

with multiplicity 2

– Eigenvectors:
 [1, 1, … , 1]T and [1,-1, 1, …, 1,-1]T

• Suppose Alice “Friends” Bob
– A 1 component graph with 2 clusters

– Fiedler Eigenvector signs remain the same

Degree
Matrix

(diagonal)

Adjacency
Matrix

(symmetric) BOB

FRED

JAN

MARY

JOHN
Fiedler

Eigenvector

Spectral Clustering

• Given m observations of n features

– Infer a graph for the m observations

– Construct the Laplacian matrix for the graph

– Use eigenvectors to cluster
the m observations

• Example: (from sklearn)

– Points in the plane with
features as xy coords

– For simplicity, only two clusters

– Thus, clusters obtained from
the Fiedler eigenvector

kNN with k = 5

Spectral Clustering: Fiedler Eigenvector

Spectral
Clustering

More than 2 clusters
requires the use of
more eigenvectors

Vertex Weights

F1 F2 … Fn

O1 # # … #

O2 # # … #

⋮ ⋮ ⋮ ⋱ ⋮

Om # # … #

O1

O2

O3

Oj

O4

O5

Om 1 2

1 1 1, , ,
ri i iF F F

1 2

33 3, , ,
ri i iF F F

1 2

2 2 2, , ,
ri i iF F F

1 2

44 4, , ,
ri i iF F F

1 2
, , ,

r

mm m

i i iF F F

Some features used to determine edges
Remaining features become vertex weight vectors

Vertex weights can generate edge weights
(via dot products, for example)

-- or –
can be used after clustering to generate

weights for clusters as vertices

VERTEX WEIGHTED GRAPHS

Rigorous Math (a bit early – Sorry!!)

• Spectral Graph Theory: If G = (V,E) is a graph
with vertex set V and edge set E, then
– W(G) = { f: V → ℝ } is a |V| dim vector space

– The Laplacian satisfies

• Vertex weighted graph theory: Let m = |V|
– Wv(G) = { f: V → ℝn } is an mn dim vector space

– Inner product: where ∙ is
dot product on ℝn

– The vertex weighted Laplacian satisfies

2

(,)

| () ()f = |T

u v E

f uf L f v




, () ()
v V

f g f v g v


 

2

(,)

f = () ()T

v

u v E

f f u f vL




Vertex Weighted Spectral Clustering

Same Procedure – But with Vertex Weights

• Given m observations of n features

– Infer a graph using r < n of the features (e.g., geodata)

– Use the n – r remaining features as vertex weights

– Construct the vertex weighted Laplacian matrix Lv

– Use eigenvectors to cluster the m observations

• Notes:

– Often feature partition is via a transformation

– Does not “throw out” data, but does reduce dimension

– Fielder vector is actually a “vector of vectors”

Example: Tweet-Like Data

• Doesn’t make sense
to use same similarity
measure on geo and
word counts

• no clusters: x,y are
uniformly distributed

• Vertex
Weights:

The Fielder Eigen“Vector”

• Is a Vector of Vectors:
 where

• Generalize “sign” clustering via inner product

– fi ∙ fj > 0  vertex i and vertex j in same cluster

– fi ∙ fj > 0  vertex i and vertex j in opposite clusters

– fi ∙ fj ≈ 0  no information (unassociated)

• Also can dot with a reference vector

1 2, , , mff f f 

1

2

3

4

i

i

i

i

i

a

a
f

a

a

 
 
 
 
 
 

ETSU

UTK

Milligan

King

Application to Data

• Dimensionality Reduction: Via PCA, Singular
values are eigenvalues of

– Squared singular values sum to norm

– SVD:

– Use instead

• What about the data corresponding to sk+1,…,sr ?

– Another approach to dimensionality reduction is to
use Laplacian of a nearest neighbors graph

– In which case, the data “left over” becomes the vertex
weights for the resulting graph

T

w wX X

 1 1, , , ,,T

k kw rV where diagU s sX s s    

 1' ' , , ,0, ,0T

w kV where dX agU i s s    

Application to Data

• Dimensionality Reduction: Find SVD of the
Laplacian L of the nearest neighbor graph of Xw

– SVD:

– Each uj in U corresponds to an sj and is length m

– Replace observation p with

• What about the data corresponding to sk+1,…,sr ?

– Vertex weights of observation (= vertex) p are
subsequently

– Ignore vertex weights to get a standard approach
AND THEN use the weights to improve the results

 1 1,, , , ,T

k k mU where diag s s sL sU     

   1 , , ku p pu

   1 , ,k mu p pu 

Advantages and Disadvantages

• Advantages

– No data is “thrown out”.

– Topological properties of the data are preserved

– And can be refined using the vertex weights

– Can do no worse than a standard approach!

• Disadvantages

– Speed: Requires computation of entire SVD

– Speed: Yes, it really is the only problem, and it is
also a very big problem!

Quick Insight: Manifold Learning

• Idea is that dimensionality is reduced because
the topology is a lower dimensional manifold
embedded in the high dimensional data

– Let f1, f2, …, fk, …, fm be eigenvectors of the
Laplacian of the nearest neighbors graph

– Topology of the data may only require a space
with basis f1, f2, …, fk for k < m

• And in particular, this same idea applies when
using tensors as our vector space

Sklearn: Manifold Learning

1000 points
10 neighbors

per point

Laplacian Matrix can be used to preserve the topology of a
manifold represented by a combinatorial graph

Laplacian matrix
Generated 2d
representation

Tensors and Spectral Clustering

• Wv(G) = { f: V → ℝn } is an mn dim vector space

– f ∈ Wv(G) is f = < f(v,r) >, v ∈ V, r=1,…,n

– If g = < g(v) > ∈ W(G) and h = < h(r)> ∈ ℝn ,
then g ⨂ h = < g(v)h(r) > (tensor product)

– If e1,…,em is an onb for W(G) and b1,…,bn is an onb
for ℝn, then ei ⨂ bj is an onb for Wv(G)

• If T : V → V is linear with matrix [T(u,v)], then
define Tv: Wv(G) → Wv(G) by

• Everything “lifts” to Wv(G) in this way

1

2

v+1

3

m = |V|

v

 ,v nT T u v I   

Final Comments

• Can also define Wv(G) = { f: V → B } for an
arbitrary Banach Space B.

– Deep Learning: Signal Processing combined with
Machine Learning, usually via neural networks

– Neural Network is a Multi-scale Nearest Neighbors
algorithm which “learns” at its vertices

– Deep Learning: Signal Processing on the vertex
weights (B) with neural network on the graph V

• And apply to twitter data

• Successively refining and improving as we do

Thank You!

Any Questions?

