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Coming up with features is difficult, time-
consuming, requires expert knowledge. “Applied 

machine learning” is basically feature engineering. 

— Andrew Ng, Stanford University 



• Data Scientists tend to use the “3 v’s” 
– High Volume: Extremely Large Datasets 

– High Variety: Many types, Highly Complex 

– High Velocity: Data so large or occurs so fast that 
computational speed is a major issue 

• KEY CONCEPT: High Variety is the “driver” 
– Kaggle Titanic Tutorial Competition:  

• Predict if a given passenger survived 

• High variety of passenger features and circumstances 

• Small Dataset: 1309 passengers each with 10 features 

– But Complexity, Variety often require “High Volume” 

 

Quick Review: “Big Data” 

Pedagogical 
Challenge:  

 
More High Variety 
with only medium 

volume. 



Big Data Example: Twitter Data 

• Easy to collect  

– Collected using python tweepy 

– Location based (used a box containing ETSU) 

 





Twitter Data 

• Easy to collect  

– Collected using python tweepy 

– Location based (used a box containing ETSU) 

• Many features  and many with many features 

– 'text', 'in_reply_to_status_id_str', 'id', 'contributors', 
'in_reply_to_screen_name', 'place', 'retweeted', 
'lang', 'truncated', 'geo', 'in_reply_to_user_id_str', 
'favorite_count', 'filter_level', 'user', 
'in_reply_to_status_id', 'source', 'created_at', 
'retweet_count', 'is_quote_status', 'entities', 
'favorited', 'id_str', 'coordinates', 'timestamp_ms', 
'in_reply_to_user_id' 



In 30 minutes, I 
collected 1000s of 
these from a small 
area around ETSU. 

This is one tweet.   



Twitter Data 

• Easy to collect  

– Collected using python tweepy 

– Location based (used a box containing ETSU) 

• Many features  and many with many features 

• Many ways of “grouping” the data 

– Grouping = Nearest Neighbor Network 

• By geo: Apartment or Dorm 

• By user: All tweets by same user 

• By time of day, By hashtag keyword, by @ keyword, …  

– Grouping leads to clustering…  



 Notice 



Twitter Data 

• Easy to collect  

– Collected using python tweepy 

– Location based (used a box containing ETSU) 

• Many features  and many with many features 

• Many ways of “grouping” the data 

– Grouping = Nearest Neighbor Network 

– Grouping leads to clustering…  

• Many questions that can be addressed 
– “Happiest” time of day,  Academic versus social tweets 

– Words associated with “angry” tweets 



How to Work With “Big Data” 

• Our goal is to understand the process that produces a 
data set (data is only a tool for doing so) 
– Valid conclusions are those that remain true even if another 

data set were to be sampled from that process 

– Ultimate Goal: Identify, Explore, and Understand the 
topology ( = underlying structure) of a process 

– Example: Tweet data is about users, not tweets 

• Two issues we must continuously address 
– Bias: The degree to which sample averages converges to 

something other than population averages 

– Overfitting: The degree to which results are only true for a 
data set and not of the process which produced it 



Data is Unstructured 

• We are going to structure it for this presentation 
(but not necessary – see note very soon!) 

– We think of a tweet in terms of its text field 

– “Across the yard. [Cam 1] on Sunday, October 16, 2016 
@ 2:05:11 PM  #CarolinaWx #ClaytonNC” 

– “Shirts selling like crazy at Woolly Worm Festival this 
weekend in Banner Elk, NC. Want one?”  

– “Mom and Dad's dog Ruby says it's Sunday afternoon 
... nap time.” 

• Let’s vectorize the text fields… 



Vectorizing Text Data 

• Remove “stop” words (the, a, an, and, or, … ) 

• Remaining words become features 

• Each tweet has count of # of occurrences of 
that word 

Sunday Worm Nap Crazy Etsu 

Observation 1 1 0 0 0 0 

Observation 2 0 1 0 1 0 

Observation 3 1 0 1 0 0 

Enormously Long!!  

But most entries 
are zeros 



Vectorizing Text Data 

• Remove “stop” words (the, a, an, and, or, … ) 

• Remaining words become features 

• Each tweet has count of # of occurrences of 
that word 
 

 

 

• Sparse representation – only store nonzeros 

– Data of the form ([row,column], value)  

– If no row/column entry, assume value is 0 

Sunday Worm Nap Crazy Etsu 

Observation 1 1 0 0 0 0 

Observation 2 0 1 0 1 0 

Observation 3 1 0 1 0 0 

Key, value pair 

Unstructured data can always be 
reduced to key-value pairs, which can 

always be considered to be sparse 
representations of tensors. 



Recommender System 

• Result is a recommender system 

– Each word has a rating (count) for each tweet, with 
a rating of 0 if word does not occur in text field 

– Also known as collaborative filtering  

• Results produced by identifying groups 
(clusters) with similar ratings profiles  

– Needed: Measure of Similarity (e.g., cosine) 

– Typically, more sophisticated measures needed 

• Nearest Neighbor Graph: Two observations are 
deemed close based on similarity measure 



Question: What are ETSU students 
doing on a Sunday Afternoon? 

Approach:  
1. Cluster the data 
2. Vectorize their tweets 

Answers: Which words are most frequent within each cluster? 

“Laundry” 

“Eating” 

“Just got back” 

“Woolly Worm Festival” 



kMeans Clustering based on Geo data:  
1. Choose k centers  
2. Move centers until intra cluster 

distance is minimal.  

Issues:  
1. Must know number of clusters a priori  
2. Everyone is in a cluster 
3. Centers may not have meaning 



Nearest Neighbor Graphs 

• Basis for all machine learning 

– Simple to use, and applicable in any situation 

– Are the theoretical “structure” produced by high 
power, sophisticated algorithms (e.g., Random Forests) 

• Classification of unlabeled observation(s) 

– Construct k nearest neighbors graph 

– Predict classification as majority vote of neighbors 

• Regression: Predict value as statistic on neighbors 

• Imputing Missing Values: as statistic on neighbors 



Spectral Clustering based on Geo data:  
1. Construct Nearest Neighbors Graph 

(k neighbors or threshold or … ) 
2. Clustering the Graph 

Issues 
1. Must guess k ( and usually not uniform) 
2. Some neighbors may be “far away” 

 Does not necessarily 
      assign every vertex  
      to a cluster!  



Two Possible Outcomes 

• Explore 

• Preprocess 

• Data trains a classifier that 
works perfectly! 

– Often via a “Super algorithm” 

– Random forest, Neural Net 

– “Black Box” outcome 

– What about the process that 
produced the data? Our goal 
is to understand the process 

• Explore 

• Preprocess 

• Repeated Refinements 

– Select/Modify Features 

– Train the Algorithm 

– Apply Metric(s) 

• Predict, interpret, visualize, 
etcetera, … 



Nearest Neighbor Graphs 
• If only we knew precisely what method to use for 

similarity and exactly how many neighbors to use for 
each node…  
– Example: Similarity for predicting age of a passenger on the 

Titanic if their age is unknown 
–      . 

 

 
 
– Obtained by repeated refinement based on metrics 
– Developed on training data, refined on validation data 
– Scored on testing data  

• Because not all Features are created equal…  



Feature Engineering 

• Features (like words in a tweet) are the target 

– Feature Selection:  Only need a subset of the features  

– Dimensionality Reduction:  lower dimensional info 
(e.g., faces) in higher dimensional data (e.g., images) 

– Manifold Reconstruction: Geometric nature 
(topology) of the process is inferred from the structure 
of the data Feature 1 Feature 2 Feature 3 … Feature n 

Weight 0.1 0.9 0.2 … 0.9 

Observation 1 # # # … # 

Observation 2 # # # … # 

Observation m # # # … # 

…
 

…
 

…
 

…
 

…
 



Feature Engineering 

• Suppose we consider the data to be a matrix 
Feature 1 Feature 2 Feature 3 … Feature n 

Observation 1 # # # … # 

Observation 2 # # # … # 

Observation m # # # … # 
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Feature Engineering 

• “Powerful Algorithms” often related to “linearly 
separable” in some high dim representation 
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Graph Theory “learns” the underlying  
topology of the process the data comes from 

Eigenvector 
Methods 

Clusters are not just “bunches”.  
 

Key is similarity within clusters  
being higher than similarity between kNN with k = 5 

Spectral Clustering = kNN + Eigenvector Methods 

kNN with k = 3 



Classifiers, Regressors, Linear Separability, etc.  
are based on the process’ topology 

kNN with k = 5 

Feature Engineering = “digging” (yes, it’s hard 
work!) deeper and deeper into the topology 



Example: Twitter Data 

• Digging deeper means for example 
– Discounting tweets sent from the highway 

– Associating clusters with types of locations 
• Library vs apartment vs dorm vs restaurant 

• Using both words and geo data 

– Using other fields in the tweet – such as “user” 
• A cluster may be a tweet like crazy single user 

• What about retweets? What is their significance?  

• Digging deeper means the data begins to tell a 
story, and we keep going until we know the story 

• Often “many stories” in a set of “Big Data” 

Our goal is not “Black Box” classifier/regressor perfection, 
nor is it a collection of charts and tables with statistical 
outcomes and diagrams.  
 
Our goal is to “go deeper and deeper” until we have a 
model for the process itself that produces such data. 
 
Feature engineering is “how we go deeper and deeper.”  



So how do we do that? 
• We can always refine our models 

– Make changes, assess with metrics 

• Based on improved understanding from previous model 

• “Every big data problem is unique” (and ultimately, personal) 

– Combine into “bigger models” (ensembles) 

– “In machine learning, the best model is all of them.”  

• We can always refine our graphs 

– Similar to above, but not the same 

– Relies on centuries of mathematics – graph theory, 
information theory, signal processing, Fourier analysis 

– And especially, lots and lots and lots of linear algebra 



Lots and Lots of Linear Algebra 

• Example: A simple   
2 component graph 

• Laplacian Matrix: 
L = D – A  
– 0 is an eigenvalue  

with multiplicity 2 

– Eigenvectors:  
    [1, 1, … , 1]T  and [1,-1, 1, …,  1,-1]T 

 

• Suppose Alice “Friends” Bob 
– A 1 component graph with 2 clusters 

– Fiedler Eigenvector signs remain the same 

Degree  
Matrix 

(diagonal) 

Adjacency  
Matrix 

(symmetric) BOB 

FRED 

JAN 

MARY 

JOHN 
Fiedler  

Eigenvector 



Spectral Clustering 

• Given m observations of n features 

– Infer a graph for the m observations 

– Construct the Laplacian matrix for the graph 

– Use eigenvectors to cluster  
the m observations 

• Example: (from sklearn) 

– Points in the plane with  
features as xy coords 

– For simplicity, only two clusters 

– Thus, clusters obtained from  
the Fiedler eigenvector 

kNN with k = 5 



Spectral Clustering: Fiedler Eigenvector 

Spectral 
Clustering 

More than 2 clusters  
requires the use of 
more eigenvectors 



Vertex Weights 

F1 F2 … Fn 
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O2 # # … # 
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Some features used to determine edges 
Remaining features become vertex weight vectors 

Vertex weights can generate edge weights 
(via dot products, for example)  

-- or –  
can be used after clustering to generate 

weights for clusters as vertices 



VERTEX WEIGHTED GRAPHS  



Rigorous Math (a bit early – Sorry!!) 

• Spectral Graph Theory: If G = (V,E) is a graph 
with vertex set V and edge set E, then 
– W(G) = { f: V → ℝ } is a |V| dim vector space 

– The Laplacian satisfies 
 

• Vertex weighted graph theory: Let m = |V| 
– Wv(G) = { f: V → ℝn } is an mn dim vector space 

– Inner product:                                     where ∙  is 
dot product on ℝn  

–  The vertex weighted Laplacian satisfies 

2

( , )

| ( ) ( )f = |T

u v E

f uf L f v




, ( ) ( )
v V

f g f v g v


 

2

( , )

f = ( ) ( )T

v

u v E

f f u f vL






 
Vertex Weighted Spectral Clustering 

Same Procedure – But with Vertex Weights 

• Given m observations of n features 

– Infer a graph using r < n  of the features (e.g., geodata) 

– Use the n – r remaining features as vertex weights  

– Construct the vertex weighted Laplacian matrix Lv 

– Use eigenvectors to cluster the m observations 

• Notes:  

– Often feature partition is via a transformation 

– Does not “throw out” data, but does reduce dimension 

– Fielder vector is actually a “vector of vectors” 

 



Example: Tweet-Like Data 

• Doesn’t make sense 
to use same similarity 
measure on geo and 
word counts 

• no clusters: x,y are  
uniformly distributed 

• Vertex 
Weights:  



The Fielder Eigen“Vector” 

• Is a Vector of Vectors: 
                                   where    

 

 

• Generalize “sign” clustering via inner product 

– fi ∙ fj > 0     vertex i and vertex j in same cluster 

– fi ∙ fj > 0     vertex i and vertex j in opposite clusters 

– fi ∙ fj ≈ 0    no information (unassociated) 

• Also can dot with a reference vector 
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Application to Data 

• Dimensionality Reduction:  Via PCA, Singular 
values are eigenvalues of   

– Squared singular values sum to norm 

– SVD: 

– Use instead 

• What about the data corresponding to sk+1,…,sr ?  

– Another approach to dimensionality reduction is to 
use Laplacian of a nearest neighbors graph 

– In which case, the data “left over” becomes the vertex 
weights for the resulting graph 

T

w wX X

 1 1, , , ,,T

k kw rV where diagU s sX s s    

 1' ' , , ,0, ,0T

w kV where dX agU i s s    



Application to Data 

• Dimensionality Reduction:  Find SVD of the 
Laplacian  L of the nearest neighbor graph of Xw  

– SVD: 

– Each uj in U corresponds to an sj and is length m 

– Replace observation p with   

• What about the data corresponding to sk+1,…,sr ?  

– Vertex weights of observation ( = vertex ) p are 
subsequently  

– Ignore vertex weights to get a standard approach  
AND THEN use the weights to improve the results 

 1 1,, , , ,T

k k mU where diag s s sL sU     
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Advantages and Disadvantages 

• Advantages 

– No data is “thrown out”.   

– Topological properties of the data are preserved 

– And can be refined using the vertex weights 

– Can do no worse than a standard approach! 

• Disadvantages 

– Speed: Requires computation of entire SVD 

– Speed: Yes, it really is the only problem, and it is 
also a very big problem! 

 



Quick Insight: Manifold Learning 

• Idea is that dimensionality is reduced because 
the topology is a lower dimensional manifold 
embedded in the high dimensional data 

– Let f1, f2, …, fk, …, fm be eigenvectors of the 
Laplacian of the nearest neighbors graph 

– Topology of the data may only require a space 
with basis f1, f2, …, fk   for  k < m 

• And in particular, this same idea applies when 
using tensors as our vector space  



Sklearn: Manifold Learning 

1000 points 
10 neighbors 

per point 

Laplacian Matrix can be used to preserve the topology of a 
manifold represented by a combinatorial graph 

Laplacian matrix 
Generated 2d 
representation 



Tensors and Spectral Clustering 

• Wv(G) = { f: V → ℝn } is an mn dim vector space 

– f ∈ Wv(G) is f = < f(v,r) >, v ∈ V, r=1,…,n 

– If g = < g(v) > ∈ W(G) and h = < h(r)> ∈ ℝn ,  
then g ⨂ h = < g(v)h(r) > (tensor product) 

– If e1,…,em is an onb for W(G) and b1,…,bn is an onb 
for ℝn, then ei ⨂ bj is an onb for Wv(G) 

• If  T : V → V is linear with matrix [ T(u,v) ], then 
define Tv: Wv(G) → Wv(G) by  
 

• Everything “lifts” to Wv(G) in this way 

1 

2 
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v 
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Final Comments 

• Can also define Wv(G) = { f: V → B } for an 
arbitrary Banach Space B.  

– Deep Learning: Signal Processing combined with 
Machine Learning, usually via neural networks 

– Neural Network is a Multi-scale Nearest Neighbors 
algorithm which “learns” at its vertices 

– Deep Learning: Signal Processing on the vertex 
weights (B) with neural network on the graph V  

• And apply to twitter data 

• Successively refining and improving as we do 



Thank You! 

 
Any Questions? 






