
Journal of Neural Engineering

TOPICAL REVIEW

A comprehensive review of EEG-based
brain–computer interface paradigms
To cite this article: Reza Abiri et al 2019 J. Neural Eng. 16 011001

 

View the article online for updates and enhancements.

Recent citations
Analysis and classification of hybrid BCI
based on motor imagery and speech
imagery
Li Wang et al

-

Decoding Attentional State to Faces and
Scenes Using EEG Brainwaves
Reza Abiri et al

-

This content was downloaded from IP address 151.141.66.162 on 05/08/2019 at 14:20



1 © 2019 IOP Publishing Ltd  Printed in the UK

Journal of Neural Engineering

R Abiri et al

Printed in the UK

011001

JNEIEZ

© 2019 IOP Publishing Ltd

16

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aaf12e

1

Journal of Neural Engineering

A comprehensive review of EEG-based 
brain–computer interface paradigms

Reza Abiri1,2 , Soheil Borhani2 , Eric W Sellers3, Yang Jiang4   
and Xiaopeng Zhao2,5

1  Department of Neurology, University of California, San Francisco/Berkeley, CA 94158,  
United States of America
2  Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee,  
Knoxville, TN 37996, United States of America
3  Department of Psychology, East Tennessee State University, Johnson City, TN 37614,  
United States of America
4  Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY 40356, 
United States of America

E-mail: reza.abiri@ucsf.edu, reza.abiri@berkeley.edu, sborhani@vols.utk.edu, sellers@etsu.edu,  
yjiang@uky.edu and xzhao9@utk.edu

Received 14 March 2018, revised 12 November 2018
Accepted for publication 15 November 2018
Published 9 January 2019

Abstract
Advances in brain science and computer technology in the past decade have led to exciting 
developments in brain–computer interface (BCI), thereby making BCI a top research area 
in applied science. The renaissance of BCI opens new methods of neurorehabilitation for 
physically disabled people (e.g. paralyzed patients and amputees) and patients with brain 
injuries (e.g. stroke patients). Recent technological advances such as wireless recording, 
machine learning analysis, and real-time temporal resolution have increased interest in 
electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on 
decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and 
various senses. Thus, there is a need to understand the various experimental paradigms used in 
EEG-based BCI systems. Moreover, given that there are many available options, it is essential 
to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or 
neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding 
their advantages and disadvantages from a variety of perspectives. For each paradigm, various 
EEG decoding algorithms and classification methods are evaluated. The applications of these 
paradigms with targeted patients are summarized. Finally, potential problems with EEG-based 
BCI systems are discussed, and possible solutions are proposed.
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1.  Introduction

The concept of using brain signals to control prosthetic arms 
was developed in 1971 [1]. Since that time, researchers have 
been attempting to interpret brain waveforms to establish a 
more accurate and convenient control over external devices. 
Later, this research area was termed brain–computer interface 
(BCI), and its applications spread rapidly [2].

BCI systems utilize recorded brain activity to communi-
cate between the brain and computers to control the environ
ment in a manner that is compatible with the intentions of 
humans [3]. There are two primary directions in which BCI 
systems have been applied. The first is studying brain activ-
ity to investigate a feedforward pathway used to control the 
external devices without the aim of rehabilitation [4]. The 
other dominant direction is closed-loop BCI systems during 
neurorehabilitation with the feedback loop playing a vital role 
in recovering the neural plasticity training or regulating brain 
activities [4].

Brain activity can be recorded through various neuroim-
aging methods [3, 5]. The methods can be categorized into 
two groups: invasive and noninvasive. Electrocorticography 
(ECoG) and electroencephalography (EEG) have become the 
most common invasive and noninvasive technologies, respec-
tively [3]. ECoG, also known as intracranial EEG, is recorded 
from the cortical surface. Other invasive technologies record 
signals from within the brain using single-neuron action 
potentials (single units), multi-unit activity (MUA), local field 
potentials (LFPs) [6, 7]. The high quality spatial and tempo-
ral characteristics of these signals lead to successful decoding 
of biomechanic parameters [8–12]. These decoding achieve-
ments for upper limb kinematics using invasive electrodes 
in monkeys and humans have resulted in accurate control of 
prosthetic devices in 3D space [13–17]. However, the invasive 
electrodes have significant drawbacks due to the risk of per-
forming surgery and the gradual degradation of the recorded 
signals. Therefore, noninvasive approaches such as functional 
magnetic resonance imaging (fMRI), magnetoencephalog-
raphy (MEG), near-infrared spectroscopy (NIRS), and EEG 
have become more widespread in human participants.

Although some noninvasive technologies provide a higher 
spatial resolution (e.g. fMRI), the EEG has proved to be the 
most popular method due to direct measures of neural activ-
ity, inexpensiveness, and portability for clinical use [3]. EEG 
measures electrical brain activity caused by the flow of elec-
tric currents during synaptic excitations of neuronal dendrites, 
especially in the cortex, but also in the deep brain structures. 
The electric signals are recorded by placing electrodes on the 
scalp [3]. EEG signals have been used to control devices such 
as wheelchairs [18] and communication aid systems [19]. 
During the past decade, EEG methods have also become a 
promising approach in controlling assistive and rehabilitation 
devices [20]. EEG signals could provide a pathway from the 
brain to various external devices resulting in brain-controlled 
assistive devices for disabled people and brain-controlled 
rehabilitation devices for patients with strokes and other neu-
rological deficits [21–25]. One of the most challenging top-
ics in BCI is finding and analyzing the relationships between 

recorded brain activity and underlying models of the human 
body, biomechanics, and cognitive processing. As a result, 
investigation of relationships between EEG signals and upper 
limb movement, real and imaginary, has become a fascinating 
area of research in recent years [26, 27].

To implement an EEG-based BCI system for a particular 
application, a specific protocol and paradigm has to be chosen 
for all phases of the experiment. First, the subject performs 
a particular task (e.g. imagery task, visual task) in order to 
learn how to modulate their brain activity while EEG sig-
nals are recorded from the scalp. Using the recorded EEG as 
training data, a neural decoder for the paradigm is generated. 
Afterward, the subject performs the task again and the neural 
decoder is used for BCI control.

Many EEG-based BCI review papers have been published 
[18, 23, 24, 28–32]; however, there is a lack of review or guid-
ance in comparing EEG-based BCI paradigms. Here we aim 
to review the most commonly employed EEG-based BCI par-
adigms. A guideline on deployed algorithms and classification 
methods in generating control signals from these paradigms 
are summarized. Each of these paradigms has their advantages 
and disadvantages depending on a patient’s physical condition 
and user-friendliness. The current and future potential appli-
cations of these paradigms in the manipulation of an external 
object, rehabilitation, restoration, enhancement, and enter-
tainment are investigated. Finally, present issues and limita-
tions in EEG-based BCI systems are examined, and future 
possibilities for developing new paradigms are discussed.

2.  Motor imagery paradigms

Motor imagery is described as imagining a movement rather 
than executing a real movement (for more detail on motor 
imagery see [27]). Previous studies have confirmed that imag-
ination activates areas of the brain that are responsible for 
generating actual movement [33]. The most common motor 
imagery paradigms reported in literature are sensorimotor 
rhythms (SMR) and imagined body kinematics (IBK). In the 
following sections, the paradigms are described in detail.

2.1.  Sensorimotor rhythms (SMR) paradigms

2.1.1.  Overview.  The sensorimotor rhythms paradigm is one 
of the most popular motor imagery paradigms (e.g. [34, 35]). 
In this paradigm, the imagined movement is defined as the 
imagination of kinesthetic movements of large body parts 
such as hands, feet, and tongue, which could result in modula-
tions of brain activity [36].

Imagined movement in sensorimotor rhythm paradigms 
causes event-related desynchronization (ERD) in mu (8–12 
Hz) and beta rhythms (18–26 Hz). In contrast, relaxation 
results in event-related synchronization (ERS), (for an in-
depth review see [37]). The ERD and ERS modulations are 
most prominent in EEG signals acquired from electrode loca-
tions C3 and C4 (10/20 international system); these electrode 
locations are above the sensorimotor cortex. These modulated 
EEG signals in the aforementioned frequency domains (mu/
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beta) can be employed to control prosthetic devices. Wolpaw 
et  al [38] controlled a one-dimensional cursor using mu 
rhythms. Figure  1 shows examples of change in frequency 
spectra of SMR during imagination of hands.

The main drawback of the SMR paradigm is that the train-
ing time for 2D and 3D cursor control can take weeks or 
months. The training for this system requires subjects to learn 
how to modulate specific frequency bands of neural activity to 
move a cursor in different directions to select desired targets.

2.1.2.  Analysis and classification methods.  SMR paradigms 
have been employed by many researcher groups. For example, 
Wolpaw and McFarland introduced the first two-dimensional 
cursor control strategy [40]. The subjects’ task was a center-
out cursor task, where the cursor was guided to one of eight 
targets located around the perimeter of a computer monitor. 
In this work, each dimension of cursor movement was con-
trolled by a linear equation in which the independent variable 
was a weighted combination of the amplitudes in a mu or beta 
rhythm frequency band recorded from the right and left sen-
sorimotor cortices. These changes were generated as the result 
of right and left-hand imaginary movements.

Bhattacharyya et  al [41] compared the performance of 
different classification methods for left/right hand imagery 
in EEG features. They found that the accuracy of kernelized 

SVM outperforms the other classifiers. Murguialday et al [42] 
designed a hierarchical linear classification scheme using the 
peak mu power band to differentiate between relaxation, left-
hand movement, and right-hand movement. For movement 
prediction of the right hand, left hand, tongue, and right foot, 
Morash et al [36] showed that time-frequency features could 
better depict the non-stationary nature of EEG SMR. Using a 
parametric modeling approach, they divided time into bins of 
256 ms and frequency into bins of 3.9 Hz and applied Naïve 
Bayesian classification. However, parametric classification 
methods require a priori knowledge of subjects’ EEG pattern 
that is not always applicable for BCI control. Nonetheless, 
Chen et al [43] used a three-layer neural network non-para-
metric approach, and they investigated an adaptive classifier 
for controlling an orthotic hand by motor imagery. A sum-
mary of previous SMR work is shown in table 1.

2.1.3.  Applications and targeted patients’ populations.  The 
SMR paradigm has been one of the most promising para-
digms used by patients with tetraplegia, spinal cord injury, 
and amyotrophic lateral sclerosis (ALS). The paradigm was 
first employed in a one-dimensional computer cursor control 
task by Wolpaw et al [38]. A drawback of the method is a rela-
tively lengthy training period of up to several weeks. Wolpaw 
and McFarland [44] used mu rhythms from four channels 

Figure 1.  An example of a change in frequency spectra for EEG recorded from C3 and C4. The top row (a) and (b) shows spectral power 
changes in C3 and C4 electrodes while performing imagined movement of right hand versus left hand. The middle row (c) and (d) shows 
spectral power change in C3 and C4 electrodes while performing imagined movement of both hands versus rest. The bottom row (e) 
and (f) shows spectral power change in C3 and C4 electrodes for imagined movement of right hand versus rest and left hand versus rest, 
respectively. (Reproduced from [39]. © IOP Publishing Ltd. CC BY 3.0.)
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across left and right central sulci to move a cursor in 2D space 
to targets located in the four corners of a computer monitor. 
Subsequently, they used the same paradigm with people who 
had spinal cord injuries to guide the cursor to eight different 
targets on the sides of a monitor by imagining right and left-
hand movement [40]. Finally, they expanded their work and 
controlled a cursor to hit targets located in three-dimensional 
space [49]. In all of these studies the subjects learned to mod-
ulate their SMR based on imagery of large body parts such as 
hands and legs.

Applications other than cursor control have also been 
employed using SMR. Guger et  al [50] used SMR to open 
and close a prosthetic hand with imagined right or left-hand 
movement. Pfurtscheller et al [51] employed foot imagery to 
restore hand grasp in a patient with tetraplegia. Muller-Putz 
et al [45] developed an EEG-based SMR system using imag-
ined foot and hand movements to help a paralyzed patient 
do simple tasks such as grasping a cylinder and moving an 
object by controlling a functional electrical stimulation (FES) 
device. Sun et al [52] and Roy et al [53] used motor imagery 
to control an artificial upper limb. Murguialday et al [42] also 
used an SMR design to open and close a prosthetic hand. In 
recent years, SMR control signals have been applied to con-
trol objects such as quadcopters [39], virtual helicopters [54], 
and robotic manipulators [20, 47, 55]. SMR is also employed 
in rehabilitation robots [46, 48] and hand orthosis [43]. The 
paradigm has also been tested with healthy and stroke patients 
[56–61].

2.2.  Imagined body kinematics paradigms

2.2.1.  Overview.  Efforts to extract motor imagery com-
mands from EEG signals has been progressing for years [49]. 
However, the time-consuming process of training and model 
calibration limits the efficacy of BCI utilization for many 
potential users. Furthermore, the first critique in controlling 
prosthetics for amputees via SMR is the lack of natural and 

intuitive control [62]. In other words, SMR lacks the ability of 
direct extraction of kinematic parameters. Although the tech-
nique can distinguish motor activities corresponding to large 
body parts, the decoded motor information does not contain 
magnitude or direction of kinematics parameters (e.g. posi-
tion, velocity, or acceleration).

Imagined body kinematics (IBK) is a motor imagery para-
digm that originated from invasive BCI technology [9, 10]. 
However, noninvasive work has noted that the information for 
this paradigm is extracted from low-frequency SMR signals 
(less than 2 Hz) [34]. IBK is classified as an independent para-
digm from SMR because the training protocols and analysis 
methods are fundamentally different from SMR paradigms. 
In IBK, the subject is asked to imagine the continuous move-
ment of only one body part in multi-dimensional space. The 
recorded signals are then decoded in the time domain. This 
paradigm is sometimes referred to as a natural imaginary 
movement. In noninvasive devices, Bradberry et al [63] inves-
tigated 2D cursor control with a natural imaginary movement 
paradigm and analyzed the data in time-domain frequencies 
of less than 1 Hz. Their subjects were instructed to use the 
natural imaginary movement of the right-hand index finger, 
thereby reducing training time to a level similar to invasive 
devices [10, 16].

In addition to Bradberry et al’s work in noninvasive EEG 
technology, Ofner et al [64] studied the continuous and natural 
imaginary movements of the right hand in a 2D plane. They 
estimated the imagined continuous velocities from EEG sig-
nals. Kim et al [65] decoded the three-dimensional trajectory 
of imagined right-hand movement in space and also examined 
the effects of eye movements on linear and nonlinear decod-
ing models. Andres et al [66] conducted a similar study in 2D 
space using linear models. Gu et al [67] decoded two types 
of imaginary movements of the right wrist at two different 
speeds and later [68] considered the imagined speed of wrist 
movements in paralyzed ALS patients. Others have studied 
the imaginary movement of the shoulder, elbow, wrist, and 

Table 1.  Previous SMR paradigms. DWT: discrete wavelet transform, LMS: least mean square, STFT: short-time Fourier transform, CSP: 
common spatial pattern, N/A: not applicable.

Reference Task Feature Classification method

[38] Cursor control in 1D Mu rhythm (8–12 Hz) amplitude from N/A
[44] Cursor control in 2D FFT  +  mu rhythm amplitude (7.5–16 Hz) Linear regression
[45] Grasping and object manipulation DWT over 12–14 Hz and 18–22 Hz LDA
[40] Cursor control in 2D Mu (8–12 Hz) and beta (18–26 Hz) rhythm 

amplitude
Linear regression  +  LMS to 
optimize weights

[42] Control of a prosthetic hand Peak mu (8–12 Hz) band power A logistic regression (relaxation 
and motor imagery)  +  a logistic 
regression (right hand and left hand)

[43] Control of a hand orthosis STFT over mu band (8–14 Hz) 3-layer feedforward NN classified 
three classes (right hand, left hand, 
no imagination)

[46] Control of a rehabilitation robot Using CSP algorithm to select features N/A
[47] Control of a robotic am Time-frequency power of EEG over the recorded 

locations on (10.5, 13.5) Hz frequency range
N/A

[48] Control of a rehabilitation robot Time-frequency power in EEG alpha (8, 13) Hz, 
sigma (14, 18) Hz and beta (18–30) Hz bands  
over C3, C4, and Cz

LDA

J. Neural Eng. 16 (2019) 011001
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finger [69–71]. Although most of this recent work could be 
classified as decoding of IBK, their application for BCI is lim-
ited and is still under investigation.

2.2.2.  Analysis and classification methods.  A number of 
seminal works have suggested that the low-frequency comp
onents of EEG signals (<2 Hz) located over motor cortex 
carry kinematic information [63–65, 67–69, 72, 73]. Although 
many studies have shown kinematic data is present in low fre-
quencies, Gu et al [67] were the first to use this information 
for classification. They decoded wrist rotation and extension 
at fast and slow speeds. They found that discrete imagined 
movement is encoded in the movement-related cortical poten-
tial (MRCP). In their study, EEG signals were low-pass fil-
tered at 2 Hz and the negative slope 2 s before the movement 
onset known as Bereitschaftspotential (BP) was examined. 
The BP has two parts, the NS1 (Negative Slope of early BP) 
and the NS2 (steeper Negative Slope of late BP). The NS1, 
NS2, and the mu (8–12 Hz) and beta rhythms (18–26 Hz) 
constituted the feature space in their study. In another study, 
Yuan et al [74] decoded seven different hand clenching speeds 
using spatial-temporal characteristics of alpha (8–12 Hz) and 
beta (18–26 Hz) bands. To translate multiple discrete speeds 
of hand imagery they developed multiple linear regression 
models and smoothed the output with a low-pass 1 Hz filter. 
Although they found a correlation between higher frequency 
bands and the speed of imagery, they did not successfully find 
movement trajectory information. Bradberry et  al [63] con-
ducted a prominent study on IBK; they were able to extract 
two-dimensional hand imagery [63] and actual three-dimen-
sional hand movement trajectory [72] using low-frequency 
EEG signals (<1 Hz). A linear decoding model with first-
order temporal differences of EEG data was developed, and 
they successfully modeled continuous cursor velocity, which 
was correlated with the defined trajectory. They also showed 
that EEG data from 100 ms before movement imagination 
onset is correlated with the movement. The linear model was 
as follows:

x [t]− x [t − 1] = ax +
N∑

n=1

L∑
k=0

bnkxSn[t − k].

The same equation was used for horizontal and vertical veloc-
ities. In this equation  x [t]− x [t − 1] is cursor velocity along 
one axis, N  is the number of EEG channels, L is the number 
of time lags, Sn[t − k] is the temporal lagged version of EEG 
at EEG channel n at time lag k, and a and b are the weights 
that result from the linear regression.

Using partial least squares (PLS) regression, Ofner and 
Müller-Putz [73] were able to reduce EEG artifacts And also 
eliminate highly correlated variables. They were also able to 
identify relationships between latent predictors and desired 
response variables. By using different electrode locations and 
different time lags as latent variables, the algorithm captured 
the user’s source space contribution to the latent variables. 
Finally, Kim et al [65] explored a nonlinear decoding model 
called kernel ridge regression (KRR). They showed that KRR 
algorithm significantly reduced eye movement contamination, 
which is common in linear models. Andres et al [66] and Kim 

et  al [65] examined the role of eye movement in the linear 
decoding of IBK. By comparing the decoding performance 
with and without EOG contaminated brain signals, they found 
that eye movement plays a significant role in IBK tasks. 
Additionally, in contrast to a report published by Korik et al 
[75] and Kim et al [65] confirmed that the SMR bands do not 
contain kinematic parameter information.

2.2.3.  Applications and targeted patient population.  The 
IBK paradigm is new to noninvasive devices. Thus far, it has 
been applied to a limited number of applications. The reason 
for this is likely due to the poor decoding of EEG signals 
[76]. Abiri et al employed natural imagery movements of one 
hand to control different gestures of a social robot [77, 78] 
and to manipulate a robotic arm [79]. Gu et al [68] employed 
the imagined speed of wrist movements in paralyzed ALS 
patients. It was shown that employing natural IBK paradigms 
can dramatically reduce the training times. A generic model 
which can be operated with zero-training is also a promis-
ing future development. Abiri et al [80, 81] used the IBK in 
a zero-training BCI paradigm to control a quadcopter in 2D 
space.

3.  External stimulation paradigms

Brain activity can be affected by external stimulations such 
as flicking LEDs and sounds. The altered EEG activity can 
be collected and decoded to control real or virtual objects or 
external prosthetics. This is the basic principle for external 
stimulation paradigms. External stimulation can be visual [82, 
83], auditory [83, 84], or somatosensory [85]. The following 
sections discuss the most common external stimulation para-
digms employed by BCI researchers.

3.1.  Visual P300 paradigms

3.1.1.  Overview.  One of the most popular paradigms in 
EEG-based BCI systems is visual P300 (for review see [86, 
87]). Farwell and Donchin pioneered the use of the visual 

Figure 2.  ERP components after the onset of a visual stimulus. 
Reproduced from [92]. CC BY 3.0.

J. Neural Eng. 16 (2019) 011001
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P300-BCI in 1988 [88] by creating what is now referred to as 
the P300 Speller. The P300 is one of the most studied event-
related potentials (ERP). An ERP is derived by averaging EEG 
signals of a specific event type. The P300 component is elic-
ited in response to infrequently presented events using what 
is known as an ‘oddball paradigm’. The P300 is a positive 
peak in the ERP ranging from 5 to 10 microvolts in size and 
a latency between 220 to 500 ms posterior to the event onset 
(see figure 2). This ERP is defined as an averaged increase in 
the amplitude of time series of brain signals which is most sig-
nificant at midline locations (Pz, Cz, and Fz in the 10/20 inter-
national system). When inter-stimulus intervals are less than 
250–300 ms [89], the definition of P300 becomes debatable 
because the P300 response and the presentation of subsequent 
stimuli overlap in time. For example, with very short inter-
stimulus intervals, like 125 ms, 3 to 5 stimuli are delivered in 
the range 0–500 ms from the onset of first stimulus. Likely, 
the P300 elicited in this paradigm is the sum of the P300 and 
other components that are elicited by other stimuli that are 
presented prior to and after any given stimulus presentation.

The most important advantages of the visual P300 BCI are 
that most subjects can use it with very high accuracy and it 
can be calibrated in minutes. Therefore, the user can easily 
and quickly use the system to control devices. Disadvantages 
of this paradigm include fatigue from the high level of atten-
tion and visual focus required to use the system [90], and the 
inability for people with visual impairments to use the system 
[91].

3.1.2.  Analysis and classification methods.  A summary of 
previous studies using P300 is shown in table  2. The P300 
was initially reported by Sutton et al [93] in 1967. The P300 
speller was initially introduced by Farwell and Donchin [88] 

within a row/column paradigm (RCP) comprised of a 6  ×  6 
matrix of letters and numbers. Since collecting subject’s overt 
behavioral response is not necessary for this paradigm, it can 
be used as a motor-free means of communication for severely 
disabled patients. Additionally, P300 shares very similar inter-
subject characteristics which help to diminish the subjects’ 
training time [94]. However, the subject is required to main-
tain attention throughout the experiment. The P300 amplitude 
is subjective to a number of elements such as the probability 
of target appearance, the inter-trial duration, difficulty of the 
experiment, attentional state of the participant and the habit-
ual effects [92]. Faster P300 responses are indicative of better 
cognitive performance in attentional and immediate memory 
task [92]. Latency jitter can make it difficult to extract the 
P300 deflection; thus, presenting multiple trials and averaging 
the EEG response is required to increase the signal-to-noise 
ratio and, thereby, improve decoding accuracy. However, 
when more trials are presented the rate of communication is 
slower, which leads to a speed/accuracy trade-off.

In [88, 94], the authors addressed the relationship between 
the number of trials and decoding accuracy using stepwise 
discriminant analysis (SWDA) and reported that more tri-
als significantly improved performance. Piccione et al [95] 
extract P300 by using the fuzzy method to combine decom-
posed components of ICA over EEG. Krusienski et  al 
[96] compared various classification techniques including 
Pearson’s correlation method (PCM); Fisher linear discrimi-
nant (FLD); stepwise linear discriminant analysis (SWLDA); 
and, linear and nonlinear support vector machines (SVMs). 
They illustrated that FLD and SWLDA performed signifi-
cantly better than other classification methods. Moreover, 
their analysis indicated that the P300 was stable across ses-
sions and subjects.

Table 2.  A summary of studies with P300 paradigm.

Reference Task Feature Classification method

[88] 6  ×  6 row/column (RC) speller Data from Pz, channel were extracted, 
and band-pass filtered (0.02, 35) Hz and 
downsampled to 50 Hz

SWLDA

[95] Control a virtual ball in 2D Data from Cz, Pz, Oz, and Fz channels 
were extracted, and ICA was applied to 
extract features

A three-layer ANN

[96, 102] 6  ×  6 row/column (RC) speller Moving average and decimation with 
factor of 12

SWLDA

[97] Computer cursor control in 2D Low-pass filter with cut-off frequency of 
34 Hz and decimation to 128 Hz

Continuous wavelet transform (CWT) 
and genetic algorithm (GA)

[103] Control of a humanoid robot Band-pass filter (0.5, 30) Hz and 
downsampling to 100 Hz

SVM

[104] Single character (SC) speller Band-pass filter (0.5, 30) Hz and 
downsampling to 60 Hz

LDA

[106] Region-based (RB) speller C1, C2, Cz, Pz, and Fz channels were 
used

Averaged Mexican-hat wavelet 
coefficients used as feature set

[107] 8  ×  9 checkerboard (CB) speller Cz, Pz, PO7, and PO8 channels were 
used

SWLDA

[2, 109] Single character (SC) speller Scaling data samples into (−1, 1) and 
downsampling to 32 Hz

Bayesian linear discriminant analysis 
(BLDA) and Fisher’s linear discriminant 
analysis (FLDA)

[110] Target selection in 3D space Channel selection and downsampling 
to16 Hz

SWLDA

J. Neural Eng. 16 (2019) 011001
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Citi et al [97] introduced a 2D cursor control P300-based 
BCI. They were able to extract an analog control signal with a 
single-trial approach using a genetic algorithm. Also, there are 
other single-trial classification approaches using P300 signals 
[98–101]. Most of the early P300 Speller research had focused 
on EEG locations along the midline (e.g. Fz, Cz, and Pz). In 
[102] information from posterior locations such as PO7, PO8, 
and Oz were added to an SWLDA classifier. They showed that 
adding additional electrode locations significantly improved 
the discriminability of data samples. Bell et al [103] increased 
the information transfer rate (ITR) to 24 bits min−1 for a four-
choice classification problem relying on the fact that P300 has 
a robust response to multiple trials. They elicited P300-based 
control analyzing only five trials of P300 responses with 95% 
accuracy using SVMs. Edlinger et  al [104] and Chen et  al 
[105] applied the paradigm in a virtual environment (VE) as an 
actuator for a smart building scenario and to control a virtual 
hand, respectively. By dividing the screen into seven different 
regions Fazel-Rezai and Abhari [106] were able to reduce dis-
traction caused by adjacent items and, at the same time, were 
able to lower the stimulus probability. These changes resulted 
in larger P300 amplitudes, which resulted in higher detection 
accuracy and higher ITR [92].

An innovative checkerboard paradigm (CBP) was intro-
duced in [107]. The CBP showed significantly higher mean 
accuracy than the row-column paradigm (RCP) (i.e. 92% 
compared to 77%) and mean ITR was increased to 23 bits 
min−1 from 17 bits min−1. The CBP is able to avoid stimu-
lus adjacency-distraction error addressed in [106] and also 
increases P300 detection accuracy by lowering the probability 
of target-occurrence. In [108], a language model to enhance 
typing speed was utilized. They examined P300 BCI para-
digms including single-character presentation (SCP), RCP, 
and they also tested a rapid serial visual presentation (RSVP) 
paradigm. They applied PCA over a band-pass (1.5–42) Hz 
filtered EEG to extract a one-dimensional feature vector from 
multiple locations over frontal, central, and parietal regions.

3.1.3.  Applications of visual P300 and targeted patient popu-
lation.  The most common application of visual P300 has 
been in developing prosthetic keyboards to provide a path-
way of communication for disabled patients. Usually, speller 
devices in BCI consist of a matrix of letters, numbers, and 
symbols [94]. The rows and columns of this matrix are flashed 
in sequence, and the subject has to focus attention on the 
intended character. The intended character is then determined 
by the speller based on its row and column. These devices 
use a statistical model based on the P300 ERP to identify the 
correct symbol during flashing. The main advantage of P300 
spellers has been their usefulness to people with ALS [92, 
111, 112] and brainstem stroke [113]. P300 has also been 
investigated as a way for a subject to control some specific 
tasks in the environment [114]. It has also been used to control 
a humanoid robot [103], and to navigate a wheelchair [110, 
115]. This paradigm was also employed to control a computer 
cursor in 2D space [97] by paralyzed patients [95]. Addition-
ally, it has been used to control a virtual hand [105] in a virtual 
reality smart apartment [104].

3.2.  Steady state visual evoked potential paradigms

3.2.1.  Overview.  The steady state visual evoked potential 
(SSVEP) is another popular visual component used in BCI 
[116, 117]. SSVEP is also called photic driving since the gen-
erators of this response are located in visual cortex. Rather 
than either motor execution or imagined motor action, sub-
jects have to shift gaze and as well as their attention to flicker-
ing stimuli, which requires highly accurate eye control.

In the SSVEP paradigm, a constant frequency flickering 
stimulus on the central retina results in an EEG pattern consist-
ent with the flickering rate. The frequencies of stimulation can 
be varied from low (1–3.5 Hz) to high frequency (75–100 Hz) 
[118]. The stimulus can be produced using a light-emitting diode 
(LED) or a cathode ray tube (CRT). Multiple flickering targets 
with distinct flickering frequencies are typically presented to 
the user. There is a strong correlation between flicker frequency 
and the observed frequency of the EEG. The user’s intended 
target is determined by matching the pattern of EEG activity to 
the command associated with the particular frequency.

There are advantages associated with the SSVEP para-
digm. Because the stimuli are exogenous, it is a no-training 
paradigm that can be used by many subjects. The stimuli 
flash at many different frequencies, thereby resulting in many 
commands and more degrees of freedom to control prosthetic 
devices. In addition, the SSVEP frequencies can be more reli-
ably classified than event-related potentials. However, the 
use of flickering stimuli could lead to fatigue for the subject, 
mainly when using low flickering frequency [119–122]. This 
paradigm is also not well suited for people with visual impair-
ments due to the required gaze shifts during use. However, 
Min et al [123] have recently proposed a new SSVEP para-
digm that uses a grid-shaped line array. They suggested that 
this novel presentation is gaze-independent. There are also 
steady-state somatosensory evoked potentials (SSSEP) [124] 
and hybrid SSSEP and P300 applications [125].

3.2.2.  SSVEP analysis and classification methods.  As 
opposed to transient VEP which is used to measure the travel 
time of a visual stimulus from the eye to the occipital cor-
tex [117], SSVEP depicts a stable characteristic of the spec-
tral content of EEG signals. Among various EEG paradigms, 
SSVEP is less vulnerable to artifacts and has higher ITR. 
BCIs based on P300 or SMR paradigms reach ITR of 4–60 
bits min−1, SSVEP-based BCIs yield ITR of 100 bits min−1 
and higher. Since information in SSVEP paradigms is located 
in narrow-band frequency ranges, a narrow-band band-pass 
filter is typically part of the signal preprocessing of SSVEP. 
However, the amplitude and phase characteristics of SSVEP 
depend on the intensity and frequency of the stimulus.

Herrmann [118] investigated the correlation between fre-
quency of stimulus presentation and the firing rates of neu-
rons. The results exhibited resonance phenomena at 40 Hz, 
subharmonics at 10 Hz and 20 Hz, and weaker intensity inte-
ger multiples of the stimulus (e.g. 80 Hz). Muller-Putz and 
Pfurtscheller [126] applied SSVEP in a hand prosthesis using 
four-class classification with LED flicker at 6, 7, 8 and 13 Hz. 
Harmonic sums at each of the stimulation frequency yielded 
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the feature set for classification of SSVEP. They achieved 
online accuracy between 44% and 88%. A drawback of the 
SSVEP paradigm is that low-frequency stimulation can lead 
to fatigue or epileptic seizure. Therefore, a high-frequency 
flicker (60–100 Hz) is preferred [127]. Bryan et al [128] used 
an estimated signal’s power spectrum generated by the fast 
Fourier transform (FFT) as an input to control a humanoid 
robot with a single electrode (Oz). Li and Zhang [129] applied 
an LDA classifier and an optimization algorithm to improve 
SSVEP online accuracy. A minimum energy combination 
(MEC) was utilized in [130] to detect principle and harmonic 
frequencies in spatially filtered signals. They also conducted 
an extensive study including 61 subjects in order to investigate 
the scope of applicability of SSVEP-based BCIs. In addition to 
performance, they examined a number of covariates including 
age, gender, and level of tiredness. Chen et al [131] examined 
the correlation coefficients between stimulus frequency and 
subject’s EEG frequency using canonical correlation analysis 
(CCA). Considering accuracy and ITR simultaneously, they 
determined a user-specific optimal stimulation duration and 
phase interval. In a text input application, Chen et  al [132] 
attempted to enhance ITR by employing entropy coding algo-
rithms such as Huffman coding. An advantage of the SSVEP 
paradigm is that it is less susceptible to motion artifacts. Thus, 
it is a suitable choice for a mobile subject. Pfurtscheller et al 
[133], showed that a gait-assistance exoskeleton could be 
accurately controlled. They evaluated online and offline per-
formance of CCA and k nearest neighbors (kNN) classifiers.

Most studies conducted with the SSVEP paradigm are 
based on decoding bottom-up visual information. Thus, these 
systems are gaze-shift dependent. Min et al [123] examined 
a top-down visual condition within the paradigm. The results 
in the top-down condition showed a different pattern over the 
occipital lobe than the pattern produced by the bottom-up con-
dition. Moreover, a randomly-shuffled LDA (rLDA) classifier 
performed more accurately in the top-down condition than the 

more commonly used CCA classifier. An overview of previ-
ous SSVEP studies with accuracy and ITR is shown in table 3.

Bio-inspired intelligent information processing techniques 
can also help to understand the human perceptual systems and 
to incorporate the biological models and features of human 
perceptual systems into the bioinspired information process-
ing techniques to process the physiological signals for BCI. 
For instance, entropy can be used to measure the dynamic 
complexity of EEG signals. Cao et al [134] proposed using 
inherent fuzzy entropy for the improvement of EEG complex-
ity evaluation, which can apply to SSVEP.

3.2.3.  SSVEP applications and targeted patients popula-
tion.  Due to a large number of discrete control commands and 
high reliability of SSVEP, the paradigm has been studied by 
many BCI researchers. Recently, a high-speed SSVEP speller 
was used to enable the subject to choose among 40 characters 
including letters of English alphabet, numbers, and some sym-
bols [131]. In addition, an user-dependent SSVEP based on 
determining the prominent key-parameter for each user was 
developed by [130] to spell only one phrase. According to the 
appearance frequency of letters, a multilevel SSVEP-based BCI 
was designed in [132] to type text. Bryan et al [128] used SSVEP 
signals to control a humanoid robot. Other applications include 
an electrical prosthesis [126], an orthosis [137], and a lower limb 
exoskeleton [133]. Recently [135] demonstrated the feasibility 
of an SSVEP paradigm in locked-in syndrome. SSVEPs have 
even been used to allow a cockroach to navigate the desired path 
[129] and to navigate in a two-dimensional BCI game [136].

4.  Error-related potential

4.1.  Overview

The error-related potential (ErrP) recently been used as an 
ERP component that can be used to correct BCI errors [138]. 

Table 3.  An overview of SSVEP paradigms.

Reference Task Feature Classification method

[132] Spelling using a multi-level selection 
criterion

(6–10) Hz over Oz, A1 and grounded 
by A2

Bayesian model enhanced by 
language entropy model

[133] Lower limb exoskeleton (9–17) Hz with eight electrodes 
over occipital and parietal lobes 
referenced by FCz and grounded by 
Fpz

CCA and kNN

[135] Checkerboard as visual stimuli (6–10) Hz over Oz, O1, and O2 Maximum likelihood
[123] Spelling using a grid-shaped flicking 

structure
(5–10) over 3 electrodes of occipital 
lobe

CCA and rLDA

[136] Navigation in two-dimensional 
computer game

15, 30, 45 Hz and their 90° phase 
shift over occipital and parietal lobes

CCA

[131] Spelling characters (7–70) Hz with nine electrodes over 
parietal and occipital lobe

CCA

[126] Control of an electrical prosthesis (6–13) Hz with four electrodes over 
occipital lobe

Maximum likelihood

[129] A brain-to-brain motion control system (6–13) Hz with four electrodes over 
occipital lobe

LDA

[130] Spelling (7–10) Hz with eight electrodes over 
occipital lobe

MEC
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The ErrP occurs when there is a mismatch between a subject’s 
intention to perform a given task and the response provided by 
the BCI. For example, assume a user wishes to move a cursor 
from the middle of a monitor to the left side of the monitor. 
If the cursor erroneously moves to the right, an error-related 
potential will be generated. The ErrP is mostly pronounced 
at frontal and central lobes and has a latency of 200–700 ms. 
Figure 3 shows a schematic of how an ErrP is generated and 
how it can be used to teach an intelligent agent to control a 
BCI. The paradigm no longer relies on an average number 
of trials like in P300, but it uses a short window in a single 
trial basis. Ferrez and Millan [139] decoded errors followed 
the occurrence of miss recognition of user intent by the BCI 
system. Subsequently, Chavarriaga and Millan [140] utilized 
the ErrP to control an external autonomous device within the 
concept of shared autonomy. The shared autonomy describes 
the situation where the user has only a supervisory control 
over the action of a system upon which he/she has no control. 
Consistent with the previous reports, they reported an ERP 
response located over the medial-frontal cortex with a nega-
tive amplitude around 260 ms after an error was detected by 
the subject. Moreover, the amplitude of the ERP is inversely 
[140] modulated by the frequency of the autonomous system 
error.

A real-time and closed-loop BCI system can be regarded 
as a control problem. The ErrP can be used to adjust the input 
control signals to the device. While in a traditional control sys-
tem, the adjustment is performed by the using linear or nonlin-
ear controllers, in a BCI system where the brain plays the role 
of controller, the adjustment can be automatically performed 
by the power of brain signals (for more information see review 
[141]). Finding a suitable controller in a traditional control 

system has become a solvable problem; however, understand-
ing brain-controlled signals and translating them into logical 
and stable commands for usage in an external device remains 
challenging. This investigation is further discussed in a study 
by Artusi et al [142].

The process of using ErrP in a closed-loop BCI system 
could be considered as analogous to ‘learn from your mis-
take’. In contrast to a traditional control system, in which error 
signal can be sensed in milliseconds, the brain does not pro-
duce an ErrP until 200 ms–700 ms after the subject receives 
feedback [139, 142]. The feedback is the relevant event whose 
onset engages the brain circuits to process error-related infor-
mation. The delay and non-stationarity of the signal slows 
the system and makes real-time implementation difficult. 
Additionally, since the ErrP does not contain any information 
about direction or magnitude, there is still the challenge of 
how to adjust command signals based on detected ErrP in a 

Figure 3.  A schematic of how an ErrP paradigm can be used in a BCI system (Reproduced from [138]. CC BY 4.0.). (Left) Detecting the 
existence of error and correct the last movement. (Right) Using ErrP in a learning process to update a BCI classifier.

Figure 4.  A schematic of two employed structures in hybrid BCI 
systems; (a) sequential form, (b) simultaneous form.
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multi-degree-of-freedom control system. Thus, most BCI sys-
tems are designed using pre-learned algorithms to perform a 
task in a closed-loop BCI [140, 143]. Recently, Iturrate et al 
[144] developed a BCI system using the ErrP to autonomously 
complete a task after a training time of several minutes. In 
their task, a brain-controlled robotic arm learned how to reach 
a specific target based on a pre-learned algorithm using ErrP 
paradigm.

4.2.  ErrP analysis and classification methods

One approach to extracting the ErrP is to detect the discrep-
ancy of the observed action and the translated action in the 
BCI platform. Ferrez and Millan [139] found an interaction 
between the subject and the BCI system. They observed posi-
tive peaks at 200 ms and 450 ms after feedback and negative 
peaks 250 ms and 450 ms after feedback. They also observed 
that ErrP amplitude is higher as the error rate decreases. 
Chavarriaga and Millan [140] investigated the consequences 
of the subject monitoring an external agent that the subject 
does not have control over. They used a cursor movement par-
adigm and estimated the posterior probability of moving the 
cursor in the wrong direction as Perr by classifying the EEG 
signal using a Gaussian classifier. They found that electrode 
locations FCz and Cz were most closely correlated to the ErrP 
response.

Itturate et  al [145] designed a study where a subject 
observed a virtual robot performing a reaching task. The sub-
ject was instructed to judge the robot motion based on prior 
information of the correct path. The averaged EEG wave-
forms at each electrode location were calculated, and the 
results showed a significant difference between the correct 
and incorrect operation of the robot. On error trials, a sharp 
positive peak at approximately 300 ms was observed and was 
followed by a negative peak at approximately 400 ms. The 
averaged EEG waveforms were derived in two steps: First, 
bipolar channels in the medial and posterior regions within 
the range (150–700 ms) were selected, offset components 
were removed, a bandpass filter of 0.5–10 Hz was applied, and 
the result was down-sampled to 64 Hz; Second, they applied 

a Functional Decision Tree in their AdaBoost classification 
algorithm to the resulting feature vector. Ten-Fold cross-vali-
dation suggested that the resulting averaged EEG waveforms 
distinguished between correct and incorrect motion of a robot.

4.3.  ErrP applications and targeted patients

The use of ErrP in BCI systems was initially investigated 
by Ferrez and Millan [139]. Chavarriaga and Millan [140] 
employed the ErrP to allow a user to control and correct the 
behavior of an external autonomous system. In their approach, 
the user watched and maintained supervisory control over the 
autonomous system in order to correct behavior of a system 
without any direct or continuous control.

ErrP has been employed for robot reinforcement learning 
[145], 1D cursor control [139, 140, 146–150], and 2D cursor 
control [144, 151]. Iturrate et al [143] used ErrP with shared 
control for a 2D reaching task. ErrP has also been used in BMI 
systems to control artificial [152] and robotic arms [149, 153], 
and it has been used to teach a robotic BMI system how to 
reach a particular target in a 2D plane [144].

The ErrP can provide additional information to improve 
closed-loop BCI systems. It is likely that, in the future, the 
ErrP will allow a user to observe and spontaneously make the 
desired change in a BCI system without the need for directly 
performing a control task [154, 155].

5.  Hybrid paradigms

5.1.  Overview

A hybrid paradigm refers to a combination of two or more 
physiological measures in which at least one is EEG (for 
review see [156–158]). The other physiological measures 
could be other bio-signals such as heart rate (ECG), eye move-
ments (EOG) or hemodynamic signal recorded by fNIRS 
[159]. In hybrid paradigms, sequential or simultaneous pro-
cessing structures can be used to output control commands to 
the BCI system [157]. Figure 4 shows a schematic of each sys-
tem. In the simultaneous processing configuration, bio-signals 

Table 4.  An overview of previously published BCI hybrid paradigms.

Reference Task Feature Classification method

[160] Control rehabilitation robotic devices Sequential P300 and SSVEP Matched filter, FFT
[161] 2D cursor control Simultaneous mu/beta rhythm and 

P300
SVM

[137] Control an orthosis Sequential ERS and SSVEP FLDA
[170] Control an artificial upper limb with 

2 (degree of freedom) DoF
Simultaneous motor imagery and 
SSVEP

CCA, FLDA

[163] 2D cursor control Simultaneous ERD and SSVEP LDA
[166] Quadcopter flight control Sequential motor imagery and eye 

tracking
SVM

[162] 2D cursor control Simultaneous SSVEP and P300 RBF SVM, FLDA
[164] Robotic grasp control Sequential SSVEP and mu rhythm CCA, STFT
[171] Robotic control Sequential EOG and ERP LDA
[172] Quadcopter flight control Simultaneous EEG and NIRS LDA
[165] Neurofeedback training Simultaneous motor imagery and 

SSVEP
CCA, CSP+FFT
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concurrently enter two (or more) parallel decoding systems 
while in a sequential setting one decoding paradigm acts as 
a gating function for another decoding system. Visual P300, 
SSVEP, and SMR paradigms are the most prevalent para-
digms in the development of hybrid BCI systems [82, 116].

In recent BCI studies, combining various mentioned para-
digms or combining a BCI paradigm with another interface 
has shown to enhanced BCI performance. For example, Luth 
et al [160] paired P300 and SSVEP in controlling an assistive 
robotic arm. In a 2D cursor task, Li et al [161] used Mu and 
Beta rhythms for controlling horizontal movement and P300 
for vertical movement. Bi et  al [162] also used a combina-
tion of SSVEP and P300. The SSVEP paradigm was used to 
extract directional information (clockwise/counterclockwise), 
and the P300 was used to decode the speed of the cursor. 
To minimize false positive rates of the user’s resting state, 
Pfurtscheller et al [137] introduced a hybrid BCI that com-
bined of event-related synchronization (ERS) and SSVEP 
collected from an EEG channel located above motor cortex 
and another electrode located above visual cortex. Allison 
et al [163] developed a 2D cursor control BCI incorporating 
SSVEP for decoding horizontal and event-related desynchro-
nization (ERD) for vertical movements.

5.2.  Analysis and classification methods

Duan et al [164] developed a hybrid BCI platform to control a 
robot to execute the grasp motion using SSVEP, Mu rhythm, 
and feet motor imagery. A comparison between a single-par-
adigm versus hybrid neurofeedback real-time BCI consist-
ing of motor imagery and SSVEP were reported by Yu et al 
[165]. They used the Common Spatial Pattern (CSP) method 

to extract maximally different mu and beta band powers for 
distinct classes of motor imagery and utilized the CCA to 
decode flickering frequency. Hyung Kim et al [166] combined 
EEG and eye tracking for controlling a quadcopter. They dis-
criminated two mental states of intentional concentration and 
non-concentration using EEG signals. They applied CSP to 
filter EEG and then utilized the Autoregressive (AR) model to 
estimate the spectral power of EEG from 11 Hz to 19 Hz. The 
classification between two states of the model was performed 
by SVM, and it worked as a gating function to switch on the 
quadcopter. Afterwards, eye tracker was exploited to control 
the direction of the drone. Kim et al [167] utilized the same 
BCI platform in a pointing and selection task. A summary of 
previous studies on hybrid BCI is shown in table 4. Further 
information in regard to hybrid BCIs can be seen in recent 
review articles [116, 156–158, 168, 169].

5.3.  Applications and targeted patients population

Hybrid paradigms have been developed and applied to many 
BCI applications. Some studies have used a combination of 
two EEG signals to control virtual objects and prosthetic 
devices. For example, Bi et al [162] used P300 and SSVEP 
paradigms to control a 2D computer cursor. Allison et al [163] 
used SMR and SSVEP paradigms to control a computer cur-
sor in 2D space. Li et al [161] used SMR and P300 paradigms 
to control a 2D computer cursor. Horik et al [170] combined 
SMR and SSVEP to control a 2-DOF artificial upper limb. 
Also using SMR and SSVEP, Duan et al [164] controlled a 
humanoid robot to perform simple tasks. Pfurtscheller et al 
[137] evaluated the feasibility of orthosis control using a com-
bination of SSVEP and motor imagery paradigms. Yu et  al 

Table 5.  Less common EEG-based BCI paradigms.

References Paradigm description

[174–179] Overt (Covert) attention paradigm: the EEG signals are generated through overt (eye movement) or 
covert (eye fixation) attention on movements of a cursor on a screen

[180–187, 200–204] Discrete movement intention paradigm: using recorded EEG signals, intention of subject is decoded 
prior to performing a task. It is a popular paradigm in rehabilitative robotics

[83, 84, 188–190, 205–207] Auditory paradigm: the origin of EEG signals is related to an external sound stimulus. The potential 
future application could be for aural prostheses

[208] Olfactory paradigm: smelling/remembering an odor could cause distinguishable changes in EEG signals
[209–211] Real movement paradigm: EEG signals are recorded (used for control) while subject is performing real 

movement
[85, 124, 191–194, 212, 
213]

Somatosensory (tactile) paradigm: tactile sensors are used to stimulate parts of body (in different 
frequency) while the EEG signals are recorded for classification and generating control commands

[154, 155] Passive paradigm: passive EEG signals without the purpose of voluntary control, such as the user’s 
intentions, situational interpretations, and emotional states, are utilized as a complementary BCI

[214] Non-motor mental imagery paradigm: EEG signals origin from non-motor imaginary tasks such as math 
calculation

[19, 215–218] Slow cortical potentials paradigm: low frequency EEG signals recorded from prefrontal cortex are 
modulated through a long training time of a cognitive task while receiving neurofeedback, as well

[219–221] Observation-based paradigm: EEG signals are collected while the subject observes different actions 
performed by an external device (such as prosthetic hand)

[222–224] Eye-movement paradigm: EEG signals are recorded while the subject is instructed to have eye movement 
to different directions. Discrete classes are extracted from EEG signals for controlling external objects

[195–199] Reflexive Semantic Conditioning Paradigm: the EEG signals is modulated by presenting various 
statements. The paradigm is primarily used for communication in ALS and CLIS populations
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[165] also used a combination of SSEVP and motor imagery 
to enhance training performance for a motor imagery para-
digm. Luth et al [160] employed a hybrid P300 and SSVEP 
for a low-level application of a semi-autonomous robotic 
rehabilitation system.

In other hybrid BCI systems, EEG is combined with other 
bio-signals such as EOG. For example, Kim et al [167] and 
Malechka et  al [173] developed wearable hybrid BCI sys-
tems using EEG and an eye-tracking device. Kim et al [166] 
employed their system with a motor imagery paradigm to con-
trol a quadcopter in three-dimensional space. Ma et al [171] 
developed a novel hybrid BCI using eye movements and 
the P300 ERP to control devices such as mobile robots and 
humanoid robots. Other studies have combined EEG para-
digms with other neuroimaging techniques (e.g. fNIRS) for 
communication purposes in ALS and monitoring of patients 
vigilance state [159] and to control external devices such as 
quadcopters [172].

6.  Other paradigms

In addition to the most common BCI paradigms detailed 
above, other paradigms have been examined in a limited 
number of studies. Table  5 shows a number of previously 
generated EEG-based BCI paradigms and a brief description 
of each system. Among the paradigms shown in table 5, the 
‘covert and overt attention’, ‘discrete movement intention’ 
and ‘auditory paradigm’ paradigms have shown promise as 
BCI devices.

6.1.  Covert and overt attention paradigm

Hunt and Kingstone [174] were among the first to use a covert 
attention BCI paradigm. They discovered the existence of a 
dissociation between voluntary shifts in overt and covert atten-
tion. In a covert attention paradigm, the subject is instructed to 
look at a centrally located fixation point. The subject’s task is 
to follow another point (e.g. cursor) without overt eye move-
ment. In contrast to covert attention, an overt attention task the 
subject is instructed to use overt eye movements while they 
attend to a moving object. Both of these approaches depend 
on visual attention, and the EEG signals are typically recorded 
from the posterior cortex. Additional studies using this par-
adigm were performed by Kelly et  al [175, 176]. In [176], 
they investigated Parieto-occipital alpha band (8–14 Hz) EEG 
activity in a covert attention paradigm to classify the spatial 
attention to the right and left. Later, they confirmed the exis-
tence of distinct patterns in overt and covert attention during 
preparatory processes [175]. Tonin and colleagues [177, 178] 
used a covert attention paradigm in a 2-class classification 
problem (i.e. attention to right corner target of a monitor ver-
sus attention to left corner target of a monitor) to control a BCI 
system in online mode and provide feedback to the subject by 
showing the result of classification. Additionally, Treder et al 
[179] employed a covert attention paradigm for a two-dimen-
sional BCI control to covertly choose a target among six tar-
gets which are equally distributed around a circle on a screen.

6.2.  Discrete movement intention paradigm

In the movement intention paradigm, EEG signals collected 
before movement onset are used to detect the intended move-
ment of a BCI user and manipulate the environment accord-
ingly. In these studies, the subject may or may not be able 
to physically execute an actual movement. However, their 
EEG signals can confirm the intention of movement before 
movement occurs [180]. In some studies, the terminol-
ogy ‘attempted’ [181] or ‘planned’ [182] movement is used 
to describe the intention of movement. This paradigm can 
be primarily and fruitfully used in motor rehabilitation. By 
using the movement intention paradigm in robotic rehabili-
tation, a patient’s intentions can initiate the movement of a 
robot. Frisoli et al [183] used a gaze-dependent variation of 
this paradigm for upper limb rehabilitation. EEG signals were 
used to adjust jerk, acceleration, and speed of the exoskeleton. 
As a means of therapy for post-stroke patients, Muralidharan 
et al [181] successfully extracted intention from EEG signals 
to open or close a paretic left/right hand. A similar study by 
Lew et al [184] was performed using two able-bodied subjects 
and two post-stroke patients with an overall success rate of 
80% in detection of movement. Investigation of EEG signals 
for the intention of the right-hand and left-hand movements 
was performed by Bai et al [185]. Bai et al [180] predicted 
wrist extension movements in seven healthy subjects. Zhou 
et al [186] classified the information from EEG signals dur-
ing the moment in which the subjects (four healthy, two 
stroke) intended to perform shoulder abduction or elbow flex-
ion movements. Also, EEG data were analyzed for a chronic 
stroke patient before the onset of hand movement toward a 
target [187].

6.3.  Auditory paradigm

Auditory paradigms have also been investigated by a num-
ber of BCI researchers [83]. Brain signals can be modulated 
either by using an intention-driven (endogenous) BCI or stim-
ulus-driven (exogenous) BCI depending on the paradigm. For 
example, auditory P300 [188] considered as an exogenous 
stimulation is used to evoke auditory steady-state responses 
(ASSR) [189]. ASSR is an auditory evoked potential in 
response to rapid auditory stimuli; Picton et al [189] showed 
that the ASSR maximum amplitude is recorded from the ver-
tex of the scalp. Sellers and Donchin [188] compared P300 
auditory and visual paradigms in patients with ALS. Although 
they showed proof of principle with the auditory P300 BCI, 
performance was significantly better in the visual condition. 
Nijboer et al [84] also validated the feasibility of an auditory-
based BCI by comparing with visual-based BCI. Ferracuti 
et al [190] used a novel paradigm where five classes of audi-
tory stimuli were presented in five different locations of space.

6.4.  Somatosensory (tactile) paradigm

In recent years, the usage of a somatosensory paradigms for 
patients with visual impairment has become popular. In this 
paradigm, vibrotactile sensors are located in pre-determined 
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parts of body while stimulations happen at different frequen-
cies [191]. The stimulations of these sensors will be reflected 
on EEG signals recorded from the scalp. Muller-Putz et  al 
[124] investigated the usability of the steady-state somatosen-
sory evoked potential paradigm. Other researchers employed 
tactile P300 paradigms in their BCI systems [192]. Imagined 
tactile paradigms were also investigated by Yao et al [85]. The 
somatosensory paradigm was utilized in assisting patients 
with locked-in syndrome [193, 194].

6.5.  Reflexive semantic conditioning paradigm

BCIs for communication purposes have been developed since 
the late eighties; however, it remains a great challenge to pro-
vide reliable results for people with severe motor disabilities, 
such as completely locked-in syndrome (CLIS). A paradigm 
named ‘reflexive semantic conditioning’ (based on Pavlov 
theory) was developed and tested in healthy participants as 
well as in people with diagnosis of ALS. The main goal of the 
paradigm is to deal with communication problems in CLIS 
and ALS patients [195–199].

7.  Current issues and future considerations

In recent years, BCI research has made significant progress 
in neurorehabilitation and assistive device technology. Each 
of the methodologies presented in this review has promise as 
brain-controlled external prosthetic devices for spinal cord 
injury patients and other with severe communication dis
orders such as ALS, LIS, and multiple sclerosis (MS). No 
doubt, there is a strong possibility that BCI systems will be 
commercialized shortly. In fact, a limited number of com-
mercial devices are already available. Some programs such as 
the BNCI Horizon 2020 project [225] has established a future 
roadmap for BCI systems. Nevertheless, there are critical lim-
itations, challenges, and issues related to BCI paradigms and 
platforms that should be addressed and considered by the BCI 
community. It is a common practice in the BCI literature to 
report the results of a study in term of classification accuracy. 
Few publications address issues such as reliability of the plat-
forms. Also, it is often not clear what are the behavioral, cog-
nitive, sensory, and motor functional outcomes in a BCI study. 
To further advance BCI research for practical applications, we 
believe these important issues should be addressed in future 
work.

7.1. Training time and fatigue

One of the most significant challenges in BCI is the training 
required for a subject to become proficient with the system. 
Most paradigms have lengthy training times, which can cause 
fatigue in subjects. Although there are examples of long-term 
use of stimulus-based BCI such as [112, 226], overall exter-
nal stimulus paradigms such as P300-based systems may 
cause fatigue over extended periods of use. Moreover, sub-
ject-dependency and even inter-session variability can make 
it necessary for BCI researchers to collect calibration data at 

the beginning of each session. To mitigate this problem, some 
recent studies have used methods such as transfer learning to 
develop a zero training/generic BCI model that generalizes to 
most subjects [81, 227–230].

7.2.  Signal processing and novel decoders

Many different decoding methods, signal processing algo-
rithms [231], and classification algorithms [30] have been 
recently investigated. Nevertheless, the information extracted 
from EEG signals does not have a high enough signal-to-noise 
ratio to control a system such as a neuroprosthetic arm with 
multiple degrees of freedom. More robust, accurate, and fast 
online algorithms are required to be able to control a multi-
DOF system. In recent years, some researchers have sug-
gested that source localization of EEG [232] and active data 
selection [233] can improve classification performance. Other 
researchers have suggested the use of advanced machine 
learning and deep learning methods [234–237], which have 
potential to extract additional features that can improve classi-
fication. Furthermore, other researchers have proposed adap-
tive classifiers and decoders in order to compensate for the 
non-stationary nature of EEG signals [238]. Meanwhile, a 
particular standardization system is essential to evaluate the 
performance of decoding algorithms in specific applications 
and BCI systems [239].

7.3.  From shared control to supervisory control in closed-loop 
BCIs

A closed-loop BCI is considered to be a co-adaptive and 
mutual learning system where the human and computer learn 
from each other, while adaptation in mathematical algo-
rithms and neural circuits also occurs. Millan [240] described 
the closed-loop BCI system as a ‘two-learner system’. The 
terms ‘shared control’ and ‘hybrid control’ were also used to 
describe the contributions of both human and machine in per-
forming the control task [20, 55, 143, 241–243]. The shared 
BCI system includes both high-level and low-level control 
systems. High-level control commands are generated by the 
brain and traditional control systems are responsible for low-
level control tasks. Interestingly, in high-level control, there 
is always a tradeoff between the natural way of control and 
subject fatigue. The ideal BCI system with mutual interaction 
can be described as a supervisory control system in which the 
subject is the leader with minimum involvement (in high-level 
control), and the BCI system serves as an intelligent system 
(in low-level control) [140, 244]. By cognitive monitoring, the 
user can act as a supervisor of the external autonomous system 
instead of continuously interacting with control commands.

The definition of a closed-loop control system is currently 
a controversial issue [141, 245]. In reality, in an EEG-based 
BCI, some types of artificial sensory feedback, except visual 
feedback [246], should be considered to provide the subject 
with the highest feeling of control in a closed-loop form. In 
contrast, invasively controlled prosthetic arms include the 
sense of touch, which increases the perception of a closed-loop 
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control system [247]. In EEG-based BCI platforms, various 
feedback mechanisms have been investigated, including brain 
stimulation [35], reaction force [248], and somatosensory 
stimulation [42].

7.4.  Development of new EEG technologies

Since scalp EEG is categorized as low-cost and affordable 
technology among brain monitoring technologies, it has the 
potential to be commercialized for general public [3]. There 
are studies to determine alertness/drowsiness from brain 
dynamics while evaluating behavioral changes with applica-
tions to drowsy driving. Having a portable EEG headset helps 
understand the brain dynamics underlying integration of per-
ceptual functions of the brain in different scenarios. Some 
studies evaluate behavioral changes in response to auditory 
signals in a driving environment and find correlations between 
brainwaves and other sensory inputs such as haptic feedback. 
As part of development for this technology many researchers 
have investigated the development of wearable and wireless 
EEG headsets [173, 249]. Dry EEG sensors have also devel-
oped [250–253]. These sensors do not require skin preparation 
or gel applications that are required of conventional wet sen-
sors. The development of these new EEG headsets could 
facilitate the application of BCIs beyond current levels. For 
example, a forehead EEG-based BCI can be used as a sleep 
management system that can assess sleep quality. The device 
could also be used as a depression treatment screening system 
that could evaluate and predict the efficacy of rapid antide-
pressant agents. Nevertheless, there are still limitations to dry 
electrode technology. For example, the sensors are uncomfort-
able to the scalp and they are very sensitive to muscle and 
movement artifacts. In addition, current dry headsets record-
ing quality typically degrades after approximately 1 h.

7.5.  Neurofeedback and the future paradigms

One future direction of BCI is its application in neurofeed-
back [254]. Neurofeedback, a type of biofeedback, is the 
process of self-regulating brainwaves to improve various 
aspects of cognitive control. In some cases, neurofeedback-
based BCIs could potentially replace medications, thereby 
reducing the negative side effects of medication. For example, 
this technology could help to alleviate cognitive and patho-
logical neural diseases, such as migraine headaches. A head-
ache detection and management system can notify migraine 
patients’ imminent migraine headaches days in advance while 
offering a treatment in neurofeedback form. Neurofeedback-
based BCIs could also be developed to assist the treatment of 
people with addiction, obesity, autism, and asthma [255]. New 
EEG paradigms can also be developed to facilitate cognitive 
control [256] and interaction with the environment [154, 
155]. For instance, ErrP can be used as a useful mechanism 
to enhance neurofeedback since it allows a user to observe 
and spontaneously make the desired change in a BCI system 
without the need to directly perform a control task. Moreover, 
new cognitive models of neurofeedback can be developed 

for neuro-rehabilitation of cognitive deficits, such as ADHD, 
anxiety, epilepsy, Alzheimer’s disease, traumatic brain injury, 
and post-traumatic stress disorder [257–263].

8.  Conclusions

Currently, there is a high level of interest in non-invasive BCI 
technology. Many variables have facilitated the popularity of 
these systems. Because of wireless recording, low-cost ampli-
fiers, higher temporal resolution, and advanced signal analysis 
methodology, the systems are more accessible to research-
ers in many scientific domains. As described in this review, 
a critical aspect of employing a BCI system is to match the 
appropriate control signal with the desired application. It is 
essential to choose the most reliable, accurate, and convenient 
paradigm to manipulate a neuroprosthetic device or imple-
ment a specific neurorehabilitation program. The current 
review has evaluated several EEG-based BCI paradigms in 
terms of their advantages and disadvantages from a variety 
of perspectives. Each paradigm was described and presented 
in terms of the control signals, various EEG decoding algo-
rithms, and classification methods, and target populations of 
each paradigm were summarized. Finally, potential problems 
with EEG-based BCI systems were discussed, and possible 
solutions were proposed.
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