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 i  g  h  l  i g  h  t  s

Active  electrode  (“channel”)  selection  leads  to  higher  average  P300  Speller  classification  performance  compared  to  a  standard  channel  set  of  similar
size.
Jumpwise  regression  is capable  of  selecting  an  effective  electrode  subset  at runtime.
Some  experimental  subjects  see large  gains  in accuracy  with  channel  selection.
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a  b  s  t  r  a  c  t

The  P300  Speller  brain–computer  interface  (BCI)  allows  a user  to communicate  without  muscle  activity
by  reading  electrical  signals  on  the scalp  via  electroencephalogram.  Modern  BCI  systems  use  multiple
electrodes  (“channels”)  to  collect  data,  which  has  been  shown  to improve  speller  accuracy;  however,
system  cost  and  setup  time  can  increase  substantially  with  the  number  of channels  in use, so  it is in the
user’s  interest  to use a channel  set  of  modest  size.  This  constraint  increases  the  importance  of using an
effective  channel  set,  but current  systems  typically  utilize  the  same  channel  montage  for  each  user.  We
examine  the  effect  of  active  channel  selection  for individuals  on  speller  performance,  using  generalized
standard  feature-selection  methods,  and present  a new  channel  selection  method,  termed  jumpwise
regression,  that  extends  the  Stepwise  Linear  Discriminant  Analysis  classifier.  Simulating  the selections

of  each  method  on  real  P300  Speller  data,  we obtain  results  demonstrating  that  active  channel  selection
can  improve  speller  accuracy  for most  users  relative  to a standard  channel  set,  with  particular  benefit
for  users  who  experience  low  performance  using  the standard  set.  Of the  methods  tested,  jumpwise
regression  offers  accuracy  gains  similar  to the  best-performing  feature-selection  methods,  and  is robust
enough  for  online  use.

©  2014  Published  by  Elsevier  B.V.
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. Introduction

Brain–computer interface (BCI) systems are designed to analyze
eal-time data associated with a human user’s brain activity and
ranslate it into computer output. The clearest current motivation
or BCI development is to extend a means for communication and
ontrol to people with neurological diseases, such as amyotrophic
ateral sclerosis (ALS) or spinal-cord injury, who  have lost motor
Please cite this article in press as: Colwell KA, et al. Channel select
http://dx.doi.org/10.1016/j.jneumeth.2014.04.009

bility (“locked-in” patients). However, state-of-the-art BCI sys-
ems for such individuals are still expensive and limited in speed
nd accuracy, and setup for home use is nontrivial; most systems

∗ Corresponding author.
E-mail addresses: kenneth.colwell@duke.edu, ken.colwell@gmail.com (K.A. Col-

ell), ryand1@goldmail.etsu.edu (D.B. Ryan), cst1@duke.edu (C.S. Throckmorton),
ellers@mail.etsu.edu (E.W. Sellers), leslie.collins@duke.edu (L.M. Collins).

ttp://dx.doi.org/10.1016/j.jneumeth.2014.04.009
165-0270/© 2014 Published by Elsevier B.V.

44

45

46

47

48
remain in the experimental stage and are primarily used in a labo-
ratory environment (Vaughan et al., 2006).

One BCI that has been successfully deployed to users with ALS
(Sellers and Donchin, 2006) is the P300 Speller, first developed
by Farwell and Donchin (1988). This system combines measure-
ments of electroencephalogram (EEG) signals on the user’s scalp, a
software signal processor, an online classifier, and presentation of
stimuli that evoke a P300 event-related potential (ERP), in order to
sequentially choose items from a list (e.g. the letters in a word, or
commands such as “Page Down” or “Escape”).

The original P300 Speller, as conceived by Farwell and Donchin,
employed only a single electrode (one “channel” of information).
The use of additional channels was discovered to improve clas-
ion methods for the P300 Speller. J Neurosci Methods (2014),

sification performance, and most if not all modern P300 Speller
systems include data from multiple recording sites (e.g. Krusienski
et al., 2006; Sellers and Donchin, 2006; Schalk et al., 2004). How-
ever, larger channel sets require more complicated electrode caps
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nd more amplifier channels, which can greatly increase the cost
f a system: implementing a 32-channel system rather than an 8-
hannel system can raise the system cost by tens of thousands of
ollars. This cost can be prohibitive to home users. Further, each
hannel must be calibrated individually for proper placement and
mpedance before each spelling session, adding to setup time and
ser discomfort. As a result, clinically relevant systems are limited
o using a subset of all possible electrode locations. The selec-
ion of these channel locations impacts system performance: one
ensitivity analysis concluded that identifying an appropriate chan-
el set for an individual was more important than factors such
s feature space, pre-processing hyperparameters, and classifier
hoice (Krusienski et al., 2008). In addition to empirical demon-
trations of the benefit of channel selection (Schröder et al., 2005;
rusienski et al., 2008; Rakotomamonjy and Guigue, 2008; Cecotti
t al., 2011), principled reasons for selecting channel sets on a
er-subject basis include the difficulty of outpatient calibration
f electrode caps by nonclinical aides (such that electrodes that
ight have been useful do not yield as much information), as well

s several neurological motivations, including variation in brain
tructure and response across subjects arising from their unique
ortical folds, and the plasticity of the brain over time, particu-
arly as it adapts to a new system. Disease progression may  also
mpact the optimal set of electrodes. Furthermore, BCI deployment
or home use has proven much more challenging than deployment
n the laboratory environment (Sellers and Donchin, 2006; Sellers
t al., 2006; Kübler et al., 2001); it is possible that the subject-
ndependent channel sets that are effective for healthy subjects
o not generalize to other populations. As a practical note, it is
nticipated that in order for users to obtain both a performance
enefit from selecting channels from an extensive set and the cost
nd setup savings of employing a system with a small subset of
hose channels, a channel selection calibration session could first
e conducted in a laboratory environment to determine the opti-
al  subset, which would then be the only channels set up for

ome use.
Although channel selection has been investigated for other

CI paradigms, such as recursive channel elimination for motor
magery tasks (Lal et al., 2004) and mutual information maximiza-
ion for cognitive load classification (Lan et al., 2007), examples
f per-subject channel selection for the P300 Speller or even
ime-domain data are more limited. Rakotomamonjy and Guigue
2008) use a channel selection procedure built in to the train-
ng of a support vector machine classifier. As such, the method
s not modularized to the extent that it could be easily combined

ith another classifier and compared to other methods. Jin et al.
2010) reported success using Particle Swarm Optimization (PSO)
nd Bayesian Linear Discriminant Analysis (BLDA) to select chan-
els in a system that spelled Chinese characters. However, PSO
an be a computationally-intensive technique, which may  limit
ts effectiveness in the clinical or home setting, where setup time
s an important aspect of system usability. Finally, Cecotti et al.
2011) demonstrated a state-of-the-art active channel selection

ethod that improved P300 Speller classification performance,
omprised of a sequential reverse selection with a cost function
etermined by the signal-to-signal-plus-noise ratio (SSNR) after
patial filtering. Due to its relatively low computational time,
ncorporation of spatial filtering, and effectiveness, this method
s included in this study for comparison. Since its use of one-
irectional sequential selection could leave the method vulnerable
o nesting effects, in which the early removal of channels with
edundant information hampers performance later in the process,
Please cite this article in press as: Colwell KA, et al. Channel select
http://dx.doi.org/10.1016/j.jneumeth.2014.04.009

urther comparison of standard and new feature selection tech-
iques for the P300 Speller channel selection problem is worth
onsidering. In the current study, the Stepwise Linear Discriminant
nalysis (SWLDA) classifier is used due to its support among the
 PRESS
nce Methods xxx (2014) xxx–xxx

literature (e.g. Farwell and Donchin, 1988; Sellers and Donchin,
2006; Krusienski et al., 2008); however, the proposed methods
for channel selection could be used in conjunction with other
classifiers or could be similarly included into a classifier training
phase.

Each channel of EEG data contributes a number of time-samples
(features) for classification decisions; channel selection can be
viewed as a feature selection problem, with the additional constraint
that only entire channels of features may  be selected for inclusion
or exclusion. Feature selection is commonly performed in machine
learning problems with high dimensionality (many features) under
the assumption that it is possible to discard some features at a
low cost (for example, if the features are irrelevant or redun-
dant). Feature selection reduces data storage and computational
requirements by discarding unnecessary dimensions, reduces clas-
sifier training time by training on less-complex data, and guards
against classifier over-fitting by reducing the effect of the “curse
of dimensionality.” (See Guyon and Elisseefi, 2003 for an excellent
introduction to feature selection.) Methods for feature selection fall
into two categories: wrapper methods, which determine feature
subsets’ value by measuring their performance with the chosen
classifier; and filter methods, which choose subsets of features inde-
pendently of the classifier. Wrapper methods observe a “search
space” of possible combinations of features, assigning each combi-
nation a value based on the classifier’s performance; these methods
are appealing for their empiricism and simplicity, but can suffer
high computation requirements due to the need to repeatedly train
and test the classifier (Guyon and Elisseefi, 2003). Filter methods
can be faster, but require a performance metric independent of
classification performance. These categories remain when gener-
alizing features to channels, and approaches from both categories
are explored here: a heuristic filter method, maximum signal-to-
noise ratio selection (Max-SNR); the wrapper methods sequential
forward selection (SFS) and k-forward, m-reverse (KFMR) selection;
and a new filter method, jumpwise selection (JS). The performance
of each method is compared to baseline results obtained with the
standard eight-channel montage determined in Krusienski et al.
(2008), which provides a compromise of reasonably high accu-
racy and modest system cost by requiring only an eight-electrode
system. For comparison to a current adaptive channel selection
algorithm, the results obtained with the montage chosen by the
sequential reverse method of Cecotti et al. (2011) are included as
well.

2. Methods

2.1. Subjects and equipment

A total of 18 healthy subjects were recruited at East Ten-
nessee State University, gave informed consent, and received
course credit in return for participation in this study. Data was col-
lected with subjects using both the row/column paradigm (Farwell
and Donchin, 1988) and with the experimental “Checkerboard”
paradigm (Townsend et al., 2010), but only the row/column data
are used for the analysis in this study. Data collection protocols and
human subject use were approved by the ETSU Institutional Review
Board (IRB). Subsequent data analysis was  approved by both the
ETSU IRB and the Duke University IRB.

EEG data was  collected from a right mastoid-referenced 32-
channel cap (by Electro-Cap; montage shown in Fig. 1). The signal
was digitized at 256 Hz and bandpass-filtered to [0.5 Hz, 30 Hz]
ion methods for the P300 Speller. J Neurosci Methods (2014),

by two  16-channel g.tec g.USBamp amplifiers. Data collection
and stimulus presentation was performed by the BCI2000 open-
source software suite (Schalk et al., 2004). Before the session, the
impedance of each channel was reduced below 10 k�.
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Fig. 1. Location of channels used in study (relative distances are not to scale). Set cor-
responds to the International 10–20 electrode placement (Sharbrough et al., 1991);
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arkened locations compose the subset defined in Krusienski et al. (2008) and used
s  a baseline comparison.

.2. The P300 Speller

.2.1. Paradigm
The P300 component of an evoked response is an event-related

otential that can be elicited via the “oddball” paradigm, in which
he subject searches for a target stimulus presented infrequently
nd unpredictably; the potential begins approximately 300 ms  after
he target appears (see Polich, 2007). Although the P300 is not
onsciously generated by the user, it can still be used for com-
unication by allowing the user to consciously decide which of

 set of random, repeating stimuli contains the target. The system
hen assumes that the stimulus that elicited the strongest P300
omponent is the target.

In this implementation, each participant sat in a comfortable
hair, approximately 1 m from a computer screen displaying a 9 × 8
atrix of characters (including the letters of the alphabet, the dig-

ts 0–9, and various control characters; see Fig. 2). The user was
nstructed to spell a preselected word or number. As the user con-
entrated on each character, the system flashed each individual
Please cite this article in press as: Colwell KA, et al. Channel select
http://dx.doi.org/10.1016/j.jneumeth.2014.04.009

ow and column (i.e. intensified their brightness) in a random order
or 62.5 ms,  then paused for 62.5 ms;  the process of flashing each

ig. 2. P300 Speller matrix with example word to be spelled (“MANAGE”). At this
oment, the subject is attending to flashes of the letter “M”; the row containing

his character is currently illuminated. In “test” mode, after each row and column
as  flashed five times, the P300 Speller will select a character and display it in the
ow underneath the target word.
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row and column was  repeated five times per character spelled. The
system then paused for 3.5 s, and continued to the next character.

Data was collected in two  phases. First, EEG data from 38 charac-
ter selections (comprising five words) were collected following the
above procedures for a training phase, in which subjects received
no feedback about their spelling performances. The training data
was then analyzed in MATLAB to calculate a subject-specific lin-
ear classifier. Then, users spelled the same five words again in an
online testing phase, during which the system provided real-time
feedback by displaying the selected character (i.e. the character at
the intersection of the highest-scoring row and highest-scoring col-
umn). In the testing phase, row and column data were averaged
while spelling to increase the signal-to-noise ratio.

2.2.2. Pre-processing
Raw EEG data is pre-processed for classification in order to

eliminate or condense redundant features and increase the P300
signal-to-noise ratio. The method used in this study follows
Krusienski et al. (2008): for each 800 ms window after a row or
column flash, the time-series data for each channel is moving-
averaged and decimated to 17 Hz (i.e., each feature is the average
of 1/17 Hz = 58.8 ms  of data); then the selected channels’ responses
are concatenated. This forms the feature vector xi (for the ith flash);
the truth value yi = {0, 1} records whether flash i illuminated the
target character (and can be expected to contain a P300).

2.2.3. Classification
Predicting yi from the associated xi is the binary classification

problem, which we approach using Stepwise Linear Discriminant
Analysis (SWLDA). In Krusienski et al. (2006), a comparison of
five classifiers on P300 Speller data, the SWLDA method exhibited
competitive classification performance and was cited for built-in
feature selection. SWLDA is one of the methods used in Farwell
and Donchin’s original P300 Speller, as well as in successful systems
for ALS patients (Sellers and Donchin, 2006), and is used as a base-
line classifier for evaluation of other system parameters (Krusienski
et al., 2008).

SWLDA trains a linear discriminant using stepwise regression:
linear discriminants have been found to perform favorably for BCI
due to their simplicity, robustness, and resistance to over-training
(Garrett et al., 2003; Muller et al., 2003; Krusienski et al., 2006), and
stepwise regression performs both linear regression and feature
selection simultaneously. The algorithm may be summarized as:
starting with an empty set of features in a linear regression model,
alternate between (1) adding the most-informative unused feature
to the subset of selected features; and (2) measuring the individual
relevance of every feature in the regression subset and sequen-
tially removing those that fall below a user-defined threshold.
“Most-informative” is judged by partial correlation with response,
and “relevance” is judged by p-values obtained via the partial F-
test. Per Krusienski et al. (2006), the algorithm was trained using
p-to-enter of 0.10 and p-to-remove of 0.15 for this study. A full
description of the stepwise regression algorithm may be found in
Draper and Smith (1981). The feature selection performed therein
guards against over-training while still selecting features that offer
independent discriminative information.

2.3. Channel selection

2.3.1. Performance assessment
Channel selection can be viewed as an optimization problem:
ion methods for the P300 Speller. J Neurosci Methods (2014),

choose the optimal subset of channels from the full set available.
Since the ultimate goal of the P300 Speller is to select characters
from the screen, optimal in this case means “that which maximizes
the percentage of correctly-chosen characters.”
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However, the relatively low speed of the P300 Speller means
hat training data is limited: in this case the data used to compare
he following channel-selection techniques consist of 38 characters
er subject. This is a very low-resolution (“blocky”) scoring space
or comparing performance. Compounding this problem, wrapper

ethods that use the score directly to select features (such as SFS
nd KFMR, discussed below) must compare improvements on the
rder of 0–5 characters per channel added. This problem is circum-
ented by using the area under receiver operating characteristic
core, which is based on each flash rather than each spelled charac-
er; each 38-character training dataset includes over 4000 flashes. A
eceiver operating characteristic (ROC) is a curve that describes the
iscriminative ability of a binary classifier (see Hanley and McNeil,
982); it may  be estimated by applying the classifier to a set of
est data and measuring the overlap between target and non-target
lassifier scores. In order to turn an estimated ROC into a scalar suit-
ble for scoring channel selection, the area underneath the ROC
AUC) is computed. Information is lost in this calculation, but it is
enerally true that an increase in AUC represents an increase in dis-
riminative ability (see Hanley and McNeil, 1982). Since the P300
peller’s classification task is to differentiate response-to-target
ata from response-to-non-target data, this discriminative ability

s what drives the P300 Speller’s performance, and AUC is an appro-
riate measure to use for channel-selection algorithm scoring.

AUC and accuracy scores for each channel selection method
re calculated in the manner channel selection would be imple-
ented practically: for each subject, all 32 channels of the five

raining runs of data are analyzed by the channel selection algo-
ithm, which returns an eight-channel subset; then, SWLDA is
rained on those channels of the training data; the resulting linear
lassifier is applied to the selected channels of the five testing runs;
nd the scores of the testing runs are analyzed as above to form
n ROC, from which AUC is calculated. Character runs include five
equences each. Note that, following the goal of finding the most
seful small subset of electrodes, each algorithm is constrained
o select exactly eight channels. This also facilitates the perfor-

ance comparison to the “standard set” described in Krusienski
t al. (2008): {Fz, Cz, Pz, Oz, P3, P4, PO7, PO8}.

.3.2. Maximum signal-to-noise ratio
A simple baseline method to select channels heuristically can be

onstructed by making a set of assumptions:

The channels that are the most helpful for identifying responses
to targets are the channels with the strongest P300 response.
Since the P300 is a relatively large deflection in potential,
recordings in which it is present will register a relatively large
change in signal energy between target responses and non-target
responses.
This energy difference corresponds to the strength of the P300
response, so the highest-performing channel set will be the set
with the largest ratio of average energy between targets and non-
targets.

Calculating the energy of a feature vector E(xi) = ||xi||22, this is
quivalent to selecting the channels that display the highest signal-
o-noise ratio (SNR), if we define “signal” to mean “target response”
nd “noise” to mean “non-target response”. Two versions of this
ethod are used: one in which the energy of the full [0 ms,  800 ms]
indow is calculated, and one in which energy is calculated only

or the window [300 ms,  600 ms], as this generally encompasses
he majority of the P300 component for this task.
Please cite this article in press as: Colwell KA, et al. Channel select
http://dx.doi.org/10.1016/j.jneumeth.2014.04.009

.3.3. Sequential forward search
Instead of following a heuristic that relies on assumptions about

 channel subset’s performance, an algorithm can simply evaluate
 PRESS
nce Methods xxx (2014) xxx–xxx

the performance of the subsets in which it is interested, and choose

the best one (a “wrapper” method). Unfortunately, there are
32
8
≈

107 eight-channel subsets of a 32-channel EEG cap, so a bounded
search must be performed. Sequential forward selection (SFS) is
an intuitive and widely-used feature-selection method in this vein,
cited in Muller et al. (2004). Due to its simplicity and monotonic
performance increase with channel set size, it is performed here as
the baseline active channel selection method. It can be summarized
as:

1. Begin with an empty currentSubset. While currentSubset has
fewer than eight members:
(a) For all j unusedChannels not in currentSubset:

(i) augmentedSubset ← currentSubset + unusedChanneli∈j.
(ii) Evaluate the performance of augmentedSubset.

(b) Select the unusedChannel whose augmentedSubset perfor-
mance was highest.

(c) currentSubset ← currentSubset + selectedChannel.

SFS repeatedly adds channels to the subset, at each step selecting
the channel that yields the highest performance increase. How-
ever, this performance must be evaluated before encountering the
testing data. This is accomplished via 10-fold cross-validation: a
classifier is trained on 9/10 of the training data, then applied to the
remaining 1/10 of the training data; the process is repeated until
all data has been tested, and an ROC is constructed from the entire
set of resulting scores.

2.3.4. Sequential reverse selection
The converse method to SFS, sequential reverse selection (SRS),

begins with the full set of channels and sequentially removes the
least helpful. However, SRS requires more iterations to reach eight
channels, and each iteration must analyze more data than an SFS
iteration; as a result, standard SRS (with cross-validated AUC as its
cost function) requires over three days of computation for a single
subject and was not evaluated for this study.

However, as noted earlier, Cecotti et al. (2011) found that SRS
selected channel sets that exhibited improved spelling accuracy,
when using a different cost function that is based on the signal-
to-signal-plus-noise ratio (SSNR). Modeling the signal as a sum of
superimposed delay-locked target and nontarget flash responses
allows the SSNR to be calculated directly using singular value
decomposition, and this is much cheaper computationally than
cross-validated classifier training. Additionally, the use of spatial
filtering was found to improve classification accuracy in the case of
low training data in Rivet et al. (2009), and was  incorporated into
the SRS experiment in Cecotti et al. (2011). This method is applied
to the data in this study as well, with and without spatial filtering,
for comparison.

2.3.5. k-forward, m-reverse search
SFS suffers from a “nesting effect” (see Pudil et al., 1994): once

added, channels remain in the subset, even if the information they
contributed is fully duplicated by later channels (i.e., there is a risk
of adding broadly informative but specifically mediocre channels).
To adjust for this, k-forward, m-reverse selection was considered
(KFMRS, sometimes known as “plus-l  minus-r” selection). Referring
to the previous definitions of SFS and SRS, the algorithm can be
summarized as:
ion methods for the P300 Speller. J Neurosci Methods (2014),

1. Begin with an empty currentSubset. While currentSubset has
fewer than 8 members:
(a) Add k members to currentSubset using SFS.
(b) Remove m members from currentSubset using SRS.
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Efficiency can be somewhat improved by maintaining a library
f channel subsets for which performance has already been calcu-
ated, and the next step forward or backward. With KFMR comes
dded computational cost relative to SFS, as well as two parame-
ers k and m (with m < k) that must be set. A high value of k implies
hat the algorithm may  have to begin the SRS phase with a high
umber of channels in the current subset (a high number of chan-
els takes much longer to analyze, as cross-validation and SWLDA
raining both require more time with increased feature dimension-
lity). However, a low value of k may  prevent the algorithm from
iscovering mutually complementary channels. To investigate both
ossibilities, the (k, m)  pairs (3, 1) and (16, 8) were evaluated.

.3.6. Jumpwise regression for channel selection
Cross-validating with SWLDA over many channel sets is com-

utationally intense and likely infeasible in a clinical or home
nvironment. This motivates the design of an algorithm that uti-
izes information in the data to choose channels in one process (a
lter method, per Lal et al., 2004). Ideally this method would use a
tatistically-sound principle rather than a heuristic like SNR.

In fact, this task is similar to the feature selection performed
n training; this similarity inspired the algorithm considered
ere titled “jumpwise regression”, a stepwise regression-inspired
ethod that operates on groups of features, taking “jumps” instead

f “steps”. Instead of adding one feature and then testing each fea-
ure in the regression for continued relevance, jumpwise regression
dds a channel’s worth of features, and then tests each channel’s-
orth-of-features in the regression model for continued relevance.

he statistical relevance tests are identical to stepwise regression,
s the partial F-test makes no specific claims on the difference
n size of regression models and sub-models. However, jumpwise

ust add features differently: stepwise regression selects the next
eature to add by choosing the feature with the highest partial cor-
elation with the response, controlling for features already in the
odel, but partial correlation does not have a scalar analog for
ultidimensional data. Instead, jumpwise selects the next chan-
Please cite this article in press as: Colwell KA, et al. Channel select
http://dx.doi.org/10.1016/j.jneumeth.2014.04.009

el to add in the same way channels are removed: each channel
s temporarily added to the current model in turn, and the channel
udged most relevant by the partial f-test is selected. (MATLAB code
or jumpwise regression is electronically available by request.) In
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n  nearly every case, the subset selected by Max-SNR yields lower accuracy than the stan
 PRESS
nce Methods xxx (2014) xxx–xxx 5

this study, p-to-enter is set at 0.10, and p-to-remove is set at 0.15.
(Note that there is no natural way  to force jumpwise selection to
choose more channels than it deems statistically relevant, besides
re-running it with a looser relevance test; at these p-values, jump-
wise selection chose eight channels for every subject, which was
the maximum number allowable as discussed above.)

1. Begin with an empty currentSubset. While currentSubset has
fewer than eight members:
(a) For all unusedChannels not in currentSubset:

i. Perform a partial f-test of the model containing {all fea-
tures of currentSubset and the features of unusedChanneli}
against {the features in currentSubset alone}.

(b) If the lowest p-value of the above f-tests is less than p-to-
enter, add the corresponding channel to currentSubset; else,
quit the algorithm.

(c) For all selectedChannels in currentSubset:
i. Perform a partial f-test of the model containing {all

features of currentSubset} against {all features of cur-
rentSubset except those belonging to selectedChanneli}.

(d) If the highest p-value of the above f-tests is greater than
p-to-remove, remove the corresponding channel from cur-
rentSubset and repeat (c); else, go to (a).

3. Results

3.1. Performance

Figs. 3–5 display the AUC and percent-correct performance
obtained for each subject, using classifiers trained on the respective
channel subsets selected by each method; the corresponding ROCs
are displayed in Fig. 7. The baseline for comparison is the standard
subset, plotted in each figure and sorted from high AUC score to low.
The average performance over all subjects is compared in Table 1.

As can be noted from Fig. 3, the channel subsets chosen by the
heuristic method, Maximum SNR, yield poorer performance than
ion methods for the P300 Speller. J Neurosci Methods (2014),

the standard channel subset for nearly every subject. Their mean
percent-correct scores are below 50%, making the speller unusable
(since incorrectly-spelled letters must be followed by a correctly-
spelled backspace character, on average, to be usable). No clear

15 mean
y standard AUC performance)

15 mean
 standard AUC performance)

e subsets chosen by full- and short-windowed Max-SNR methods on each subject’s
may  be viewed.) AUC is a general measure of classifier discriminability, and Percent
subject’s AUC score using the “standard” subset defined in Krusienski et al. (2008).
dard subset.
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Fig. 4. AUC and percent correct scores for the subsets chosen by sequential selection methods. In contrast to Max-SNR, the mean accuracy obtained with the selected subsets
increases relative to the standard subset. Further, many subjects at the lower end of the spectrum see a large increase in accuracy with channel selection. Subsets selected
by  SFS obtain performance similar to subsets selected by KFMR.
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Fig. 5. AUC and percent correct scores for the subsets chosen by jumpwise selection. The mean accuracy of subsets selected by jumpwise selection is significantly higher
than  the accuracy of the standard set. The increase is similar in scale to that obtained by SFS, including the large gains for subjects with previously low accuracy. However,
jumpwise requires only 1 min  to compute, in contrast to the 1 h required by SFS.

Table 1
Results of each method. Subjects’ scores are calculated individually; the average over subjects is presented here. Computation time was calculated by training each algorithm
on  38 characters of data in MATLAB on a quad-core CPU with 4GB RAM. Significance test for AUC differences is the clustered AUC comparison test of Obuchowski (see
Obuchowski, 1997); for percent-correct, the proportion difference test is used. In each case, scores from the subsets obtained by a new method are compared to the scores
of  the standard set. Both SNR methods choose subsets that average a decrease in performance relative to the standard set, whereas the other methods choose subsets that
result  in an average increase in performance, using either scoring metric.

Method Mean time Mean AUC p Mean Acc. p

(Standard set) – 0.844 – 74.7% –
Full-window SNR 5 s 0.750 – 45.3% –
Short-window SNR 5 s 0.756 – 48.1% –
Seq.  reverse search (SSNR) 90 s 0.8407 – 72.2% –
Seq.  Rev. (SSNR), Sp. Filt. 90 s 0.8303 – 68.3% –
Seq.  forward search 1 h 0.866 <0.0001 79.2% 0.048
3-Forward, 1-reverse 1.5 h 0.868 0.00076 79.7% 0.028
16-Forward, 8-reverse 7.5 h 0.866 0.00021 79.1% 0.054
Jumpwise selection 90 s 0.869 <0.0001 79.1% 0.054
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ig. 6. AUC and percent correct scores for the subsets chosen by the sequential rever
ubjects observe comparable or better performance using the SRS–SSNR method, 

election both outperform the SRS method.

attern exists differentiating performance by SNR channel sets cho-
en with the full window versus the shortened window. The mean
omputational time to run SNR on five training runs is 5.0 s.

There are many possible reasons for the poor performance of the
ax-SNR algorithm. For example, channels 17 and 18 are selected

or nearly every subject: these channels correspond to electrodes
irectly above the eyebrows, which see large potential deflections
ny time the subject’s eyes or surrounding facial musculature move.
f subjects’ eyes are more likely to move when they see their tar-
et than when they see a non-target, their target response may
ave higher variance but retain no difference in mean from the
on-target response, making these features worthless to a linear
lassifier. However, excluding these channels from consideration
nd using maximum SNR was also performed, and still did not result
n an increase in average accuracy. Similarly, other areas of the scalp
ould see an energy difference due to responses that are not sta-
le in the time domain. Thus, energy-based metrics for channel
election do not appear effective.

As shown in Fig. 4, SFS selects channel subsets that outper-
orm the standard set for most subjects (p < 0.0001, Obuchowski
lustered-AUC test (see Obuchowski, 1997); several subjects see
arge increases in performance relative to the standard subset (par-
icularly subjects with lower standard-subset scores) and of the
ew that see a performance decrease, it is by a narrow margin
elative to the gains. The average of the SFS scores also demon-
trates an improvement over the average of the standard-subset
cores. The mean computational time required for SFS to select
hannels for one subject-session is approximately 1 h. This set of
mprovements indicates that effective channel selection can indeed
eliably outperform the standard channel subset. However, the
ime required for the algorithm is infeasible in a clinical or home
etting.

The results shown in Fig. 4 for KFMR are very similar to
he SFS results, although different channels are chosen. The dif-
erence in performance relative to the performance with the
tandard set is also statistically significant (p = 0.00076 for (3, 1)-
Please cite this article in press as: Colwell KA, et al. Channel select
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FMR and p = 0.00021 for (16, 8)-KFMR, Obuchowski clustered-AUC
est). Improvements for the majority of subjects appear in both
arameterizations of KFMRS. However, the mean time required
o run (3, 1)-KFMRS was 1.5 h, and the time required to run
ch using signal-to-signal-plus-noise ratio, per Cecotti et al. (2011). Although several
ubjects are left with nearly unusable channel sets. On average, SFS and jumpwise

(16, 8)-KFMRS was  7.5 h. Considering the limited improvement
over SFS, the increased computational time cannot be justified, and
still remains outside the selection computation duration acceptable
for practicable use.

The results shown in Fig. 5 compare jumpwise selection to
SFS, as a representative of the wrapper methods, and the stan-
dard set. Again, a statistically-significant increase in performance
is observed over the standard subset (p < 0.0001, Obuchowski
clustered-AUC test). Further, the improvement of mean AUC is very
close to the improvements found with SFS and KFMR, with similar
results for poor default performers for whom some large perfor-
mance boosts are observed. However, the computation required
by jumpwise is approximately 90 s: a 40× increase in speed rela-
tive to SFS, and easily fast enough to compute between training and
testing runs.

Fig. 6 compares the performance obtained by SFS and jumpwise
to the SRS-SSNR method utilized by Cecotti et al. (2011). No clear
pattern exists for the SRS-SSNR scores: some subjects obtained sub-
stantial improvements (see the 3rd, 11th, and 16th subjects’ AUC
scores), while others obtained lower scores (8th, 9th, 12th), and
two subjects obtained dramatic decreases compared to the stan-
dard subset (14th and 15th). Regardless of whether spatial filtering
is applied, the mean scores for jumpwise are significantly higher
than the mean scores for SRS-SSNR (p = 0.027 and p = 0.0026 with
and without spatial filtering, Obuchowski clustered-AUC test). Spa-
tial filtering does not appear to aid performance; however, the
performance benefits from spatial filtering in Rivet et al. (2009)
were primarily seen in cases with far less training data than this
study (2–5 training characters rather than 38). Although SRS-SSNR
requires approximately the same amount of time as jumpwise
selection to choose a subset, its wide variance in observed scores
may  make it a less reliable channel selection algorithm; further
studies in an online test could help determine whether this is the
case.

3.2. Channels selected
ion methods for the P300 Speller. J Neurosci Methods (2014),

The consistency of the subsets selected by the effective methods
was also considered: if a method improved accuracy by selecting
the same (non-standard) subset for all subjects, for example, active
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Fig. 7. Comparison of receiver operating characteristics obtained by SWLDA on each subject’s training data, using the respective channel subsets obtained by each investigated
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ethod. Several subjects obtain considerably superior ROCs with actively-selected

hannel selection could be avoided by simply replacing the stan-
ard subset from Krusienski et al. (2008) with the new subset. Fig.

 displays the number of times each channel was selected by each
ethod, compiling that method’s selections for all subjects. In fact,

o method selected even a single channel for more than 15 of 18
ubjects, and among the effective methods, nearly every channel
as selected at least once. Channels in the standard subset are

hown in red in the figure; as expected, many are selected often,
mplying that the standard subset does provide predictive power.
owever, most standard-subset channels were still selected for

ewer than half of the subjects tested. Also note that channels num-
Please cite this article in press as: Colwell KA, et al. Channel select
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ered higher than 24 refer to occipital locations, where over half the
tandard-subset channels are clustered; these channels were often
elected by the effective methods, suggesting that the standard sub-
et is clustered in an area with valuable discriminative information,
ts than with the standard set described in Krusienski et al. (2008).

but that optimal sites differ from user to user. This can be easily
seen in the topographical heat map  of jumpwise-selected channels
in Fig. 8. The subsets selected by each method for three representa-
tive subjects are displayed in Fig. 9: the effective methods tend to
share more channels with each other than with the standard sub-
set. By contrast, the maximum SNR methods selected very few of
the same channels as the standard subset or the effective meth-
ods’ selected subsets, with the exception of Subject 11—the only
user for whom the Maximum SNR subset obtained accuracy simi-
lar to the other methods’ subsets. Fig. 10 displays the mean ERP for
each subject on three representative channels. Little consistency in
ion methods for the P300 Speller. J Neurosci Methods (2014),

waveform can be seen from subject to subject, demonstrating that
active channel selection is not matching waveforms to a pattern
but rather determining whether the channel is most beneficial to
the user.
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Fig. 8. Histogram representing how many times each channel was selected by each method across all subjects; the channels in the standard subset are shown in red. Channel
positions on the scalp are shown in Fig. 1. The maximal value, 18, would be attained only if the method chose this channel for every subject; notably, no method did so
for  any channel. The effective methods (SFS, KFMR, and jumpwise) selected the channels in the standard set more often than the maximum SNR methods, but most were
still  selected for fewer than half of subjects. Instead, the effective methods selected nearly every channel for at least one subject. The jumpwise selection histogram is also
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isplayed as a topographical heat map, in which more popular channels are colored
hannels,  popular channels are distributed throughout the occipital region.
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. Discussion

The motivation for this investigation was to enhance the prac-
icality of the P300 Speller using active channel selection, which

ig. 9. Channel subsets chosen by each method for three representative subjects.
ubjects 3, 11, and 16 (as sorted by AUC score in Fig. 5) represent users who observe
ood, average, and poor performance, respectively, with the standard channel sub-
et. Often, the effective methods (SFS, KFMR, and jumpwise) include only a few of
he standard channels, although those methods frequently selected many of the
ame channels. The maximum SNR methods selected very different subsets than
he  standard set or the effective methods, with the exception of Subject 11 (the only
ubject to observe improved performance with the SNR subsets). Two methods very
arely selected identical subsets for a given dataset.
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r than less popular channels. Rather than following the exact layout of the standard

offers the potential to improve spelling accuracy and correct for
potential implementation errors or neural changes in the user,
while still utilizing a channel subset of modest size. The obtained
results are consistent with the literature (Krusienski et al., 2008;
Schröder et al., 2005) in demonstrating that channel selection can
have a dramatic effect on P300 Speller usability—poor channel sets,
such as those selected by Max-SNR, can make the system unusable,
whereas other channel sets, such as those selected by sequential
methods and jumpwise, can increase system accuracy relative to
a standard channel subset with statistical significance. However,
the ultimate goal of a channel selection algorithm is to enhance the
practicality of the system; computation time, therefore, is quite
important. Since the sequential methods examined here required
far too much computation to be implemented during system setup,
their usefulness is limited; further, although more sophisticated
and computationally intensive sequential selection methods exist,
such as the sequential forward floating search method described
in Pudil et al. (1994), their investigation is not motivated by these
results. Of the methods tested, jumpwise selection combines the
performance improvements of the sequential methods with practi-
cal computation requirements that may  be put into practice for data
collection and home use. While not presented here, these results
were replicated using Dataset II of the BCI Competition III, demon-
strating that these results are not unique to the 18-subject dataset
analyzed here.

Most notable is the dramatic improvement observed in sev-
eral subjects’ sessions that began with low default-set scores. It
is easy to see that channel-selected scores are strongly correlated
with standard-set scores, implying that the driving factor in score
variation is not channel subset. However, this pattern is inter-
rupted by at least four of the poorer performers, suggesting that,
for these subjects, poor response near the standard channels may
ion methods for the P300 Speller. J Neurosci Methods (2014),

be (a) a primary reason their scores are lower than average, and
(b) correctable with these methods. This may be an important con-
sideration for transitioning P300 Spellers for use with populations
with disabilities. For example, Sellers and Donchin (2006) observed
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Fig. 10. Each subject’s average ERP response over all trials on three representative channels: a “popular” channel, PO8, which jumpwise selected for 14 of 18 subjects; a
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common” channel, P7, selected for 8 subjects; and an “unpopular” channel, F7, selec
or  that subject. Wide variation is seen across subjects, even for popular channels: a
o  a particular pattern.

ower average P300 Speller performance from subjects with ALS,
ompared to healthy subjects. Therefore, benefits to users in this
ange of performance may  be important.

Additionally, the ability of jumpwise selection to choose effec-
ive channel subsets suggests that it may  have the capacity to
ounteract poor electrode-cap placement, a risk of home use, by
electing other channels that still contain discriminative informa-
ion. However, since the data for this study were collected under
areful laboratory conditions, this hypothesis cannot be tested
sing the current dataset.

We  have thus presented a new method for channel selection
hat is based on the SWLDA classifier, is fast enough to deploy for
ome and clinical use, obtains state-of-the-art performance com-
ared to existing approaches, and may  make the P300 Speller a
ar more effective system for certain subjects, while maintaining
r improving performance relative to the standard subset for oth-
rs. Further, several avenues for investigation into P300 Speller
hannel selection remain inviting. Although the eight-channel limit
emonstrates that these channel-selection methods can select
igher-performance channel sets than the standard set, the amount
f additional performance “purchased” by adding an electrode may
e valuable information to users. Thus, one measure of interest
ight be AUC scores of jumpwise selection and SFS as the number

f desired channels steps through a wide range. Also, longitudinal
esults that examine selected-subset consistency for a single user
ver time are of interest: considerable implementation effort could
e saved if a subset of channels need only be determined once per
ubject.
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