
508 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 21, NO. 3, MAY 2013 

Bayesian Approach to Dynamically Controlling
 
Data Collection in P300 Spellers
 

Chandra S. Throckmorton, Kenneth A. Colwell, Member, IEEE, David B. Ryan, Eric W. Sellers, and
 
Leslie M. Collins, Senior Member, IEEE
 

Abstract—P300 spellers provide a noninvasive method of 
communication for people who may not be able to use other 
communication aids due to severe neuromuscular disabilities. 
However, P300 spellers rely on event-related potentials (ERPs) 
which often have low signal-to-noise ratios (SNRs). In order to 
improve detection of the ERPs, P300 spellers typically collect 
multiple measurements of the electroencephalography (EEG) 
response for each character. The amount of collected data can 
affect both the accuracy and the communication rate of the speller 
system. The goal of the present study was to develop an algorithm 
that would automatically determine the necessary amount of data 
to collect during operation. Dynamic data collection was controlled 
by a threshold on the probabilities that each possible character 
was the target character, and these probabilities were continually 
updated with each additional measurement. This Bayesian tech-
nique differs from other dynamic data collection techniques by 
relying on a participant-independent, probability-based metric as 
the stopping criterion. The accuracy and communication rate for 
dynamic and static data collection in P300 spellers were compared 
for 26 users. Dynamic data collection resulted in a significant 
increase in accuracy and communication rate. 

Index Terms—Brain-computer interface, dynamic stopping, 
P300 speller. 

I. INTRODUCTION 

A LTHOUGH a variety of augmentative devices are avail-
able to assist people with communication disorders, many 

of these tools require the user to have some motor control in 
order to operate the device. People affected by severe physical 
limitations, such as those caused by amyotrophic lateral scle-
rosis (ALS) or other severe neuromuscular disabilities, may not 
have the physical ability required to use these devices. Brain-
computer interfaces (BCIs) such as the P300 speller provide 
a noninvasive method of communication that is not reliant on 
physical movement [1], although the ability to control eye-gaze 
may impact success with the device (e.g., [2] and [3]). Several 
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studies have indicated that P300 spellers may be viable options 
for communication for those with ALS (e.g., [4]–[6]). 
P300 spellers rely on event-related potentials (ERPs) that 

occur in scalp-measured electroencephalography (EEG) to 
determine the character that the BCI user intends to spell 
(termed the target character). P300 spellers are so named due 
to the P300 ERP that is elicited by these spellers, although 
other ERPs may also be used in classification (e.g., [7] and 
[8]). The P300 is a positive peak in the EEG measurement that 
occurs approximately 300 ms after an uncommon but relevant 
stimulus has been presented. In the case of P300 spellers, this 
stimulus is typically an illumination of the target character. The 
user attends to the target character while the speller illuminates 
characters at random. When the target character is illuminated, 
an ERP is elicited. By detecting the ERP in the recorded 
EEG responses, the target character can be determined. These 
ERPs often have low signal-to-noise ratios (SNRs); thus, 
P300 spellers typically collect multiple repetitions of the EEG 
responses to all of the character flashes. The repetitions are 
averaged to improve the SNR of the P300 response and thereby 
increase spelling accuracy. The number of repetitions collected 
for averaging is often held constant across participants and 
target characters, regardless of the SNR of the data. However, 
numerous offline analyses have suggested that spelling speed 
could have been greatly improved if the speller had stopped 
collecting data when the correct character had been selected as 
the target character (e.g., [9]–[12]). 
Several studies have considered methods of adaptively col-

lecting data with significant improvements in spelling speed 
and/or accuracy [6], [13]–[16]. However, each of these methods 
has relied in some form on the past performance of the partic-
ipants to control the data collection. Several of these studies 
relied on averaging training data across a participant pool to 
set the threshold for stopping data collection [14], [16]. Using 
this information for controlling data collection, however, creates 
the potential for mismatch if the participant pool is changed. 
This may be a significant issue for BCI users with disabilities 
since BCI users are likely to differ more from each other, due 
to the etiology or progression of their disability, than might be 
expected of a pool of participants without disabilities. While 
Townsend et al. [6] and Jin et al. [13] avoided the issue of po-
tential mismatch between participant pools by relying on partic-
ipant-specific controls to set the stopping criteria, the assump-
tion is made that user performance will remain relatively con-
stant for each target character. 
A Bayesian approach to dynamically stopping the data 

collection process is proposed here. This approach differs from 
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previous approaches by basing the stopping criterion on the 
confidence that the correct character has been selected as the 
target character rather than relying on a participant-specific 
metric. The proposed system avoids assumptions about the 
performance of the participant pool or individual participants; 
thus providing the flexibility to adjust data collection based on 
the quality of responses. This flexibility may mitigate issues 
such as attention shift or increasing fatigue levels. 

II. METHODS 

A. Participants and Equipment 

Thirty-one healthy participants were recruited from the 
student population at East Tennessee State University (ETSU). 
Four participants were excluded for not completing the study, 
and the results from one participant were dropped after it was 
determined that the wrong classifier weights had been used 
during online testing. Participants volunteered their time, and 
all data collection occurred at ETSU. Participants gave in-
formed consent, and the use of human participants as described 
herein was approved by the ETSU Institutional Review Board 
(IRB). Analysis of the data was approved by the Duke Uni-
versity IRB, and both the use of human participants and data 
analysis were approved by the National Institute on Deafness 
and other Communication Disorders. 
EEG responses were measured using 32-channel caps from 

Electro-Cap International, Inc., connected to a computer via two 
16-channel GugerTec g USBAMP Biosignal Amplifiers. Data 
collected from electrodes Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz 
were used for classification, referenced to the right ear electrode. 
These electrodes are commonly used for P300 spellers and have 
been demonstrated to provide adequate information for commu-
nication (e.g., [17]). The EEG responses were sampled at a rate 
of 256 Hz. The open-source BCI2000 C software package 
developed by Schalk et al. [18] was used for stimulus presenta-
tion and data collection for the static stopping criterion (SSC). 
Additional functionality was added to the software, allowing the 
dynamic stopping criterion (DSC) to be used. 

B. P300 Speller Paradigm 

Participants were presented with a 9 8 grid of characters 
and functions (see Fig. 1). This study relied on a row/column 
paradigm for flashing the grid characters [1]. Each row and 
column was flashed once, in random order, in a sequence. Thus, 
a target character was flashed twice in a sequence of 17 flashes 
(once with a row flash and once with a column flash). In the 
SSC case, five sequences were collected for each target char-
acter. This number of sequences was within the range of se-
quences suggested as optimal for the data collected in the BCI 
Competition 2003 (e.g., [9] and [10]), and five sequences were 
used in Townsend et al. [6] to determine the optimum number 
of sequences for each participant, suggesting that a high level of 
performance can be expected from five sequences. Flash dura-
tion was 62.5 ms followed by an interstimulus interval of 62.5 
ms before the next flash. After a target character was selected, 

Fig. 1. Screen capture of the interface used in this study. The word to be spelled 
was displayed in the top gray bar followed by the current target character in 
parentheses. Feedback was provided by the speller displaying the character it se-
lected below the actual target. Characters were illuminated in rows or columns, 
and the order was random. 

an intertarget interval of 3.5 s occurred. Thus, the selection of 
each character in the SSC condition required 14.1 

sec flashes
seconds sec sequences 

flash sequence 

In the DSC case, the number of sequences varied, and the 
task could end without completing a sequence. The DSC task 
was allowed to continue for more than five sequences to demon-
strate the potential of the algorithm to collect more data, if nec-
essary, to make a confident decision. Ideally, the DSC algorithm 
would continue until a confident decision was reached; how-
ever, a limit of ten sequences was imposed with the assumption 
that the cost of the time and attentional resources required to se-
lect a character with greater data collection would outweigh the 
potential advantage of getting the character correct with high 
confidence. 

C. Data Collection and Classifier 

The words for copy-spelling were randomly drawn from a 
subset of the available words in the English Lexicon Project 
[19]. The word set consisted of the 400 six-character words with 
the highest frequency of occurrence in written communication 
as measured by HAL corpus frequency [20]. A session consisted 
of five calibration runs and ten online test runs; five runs for 
the SSC and five runs for the DSC. Each run consisted of a 
six-character token. 
Participants completed the study in a single session. At the 

start of the session, participants were asked to copy-spell four 
words and one random sequence of six numbers. These data 
were used to train the classifier and provide likelihood estimates 
for the DSC. The signal preprocessing and the classifier were 
those provided with BCI2000 [18]. The preprocessing of the 
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Fig. 2. Flow chart of the DSC algorithm. The upper row indicates the offline calibration necessary to run the algorithm online. Training data is collected and the 
classifier responses to each flash are grouped by whether a target was present/absent. Kernel density estimation is then used to smooth the histograms of classifier 
responses and generate likelihood pdfs. The lower row indicates the online processing for dynamically controlling data collection. Before data collection begins, 
each character is given an initial probability of being the target character. With each new flash, the classifier response is calculated. This response, used with the 
likelihood pdfs generated from the training data, gives an estimate of the target and nontarget likelihoods. For example, if the classifier response to the flash was 
1, then given the pdfs shown, the target likelihood would be estimated as 0.1 while the nontarget likelihood would be estimated as 0.3. The character probabilities 

are updated with these likelihood values, and if one of the character probabilities exceeds the threshold, that character is selected as the target. If not, a new flash 
is presented and the process of updating the character probabilities is repeated. 

signal consisted of extracting 800 ms of raw EEG signal fol-
lowing each flash, reducing the data dimensionality by parti-
tioning the data into equal lengths of 13 samples and taking 
the average (reducing the sampling rate to approximately 20 
Hz) and concatenating these dimension-reduced features across 
the channels of interest. This resulted in 120 features per flash 
(15 features 8 channels), and these features were used as the 
input to a stepwise linear discriminant analysis classifier (see 
Krusienski et al. [21] for a description of its use with BCI P300 
spellers). Stepwise linear discriminant analysis (SWLDA) has 
been demonstrated to be effective for discriminating between 
EEG responses for target and nontarget characters in multiple 
studies (e.g., [4], [6], [17], and [22]). SWLDA weights the fea-
tures based on their utility for discrimination. These weights are 
determined for each participant from the training data. After 
the training data were collected, participants were then tested 
with the SSC and the DSC tasks by copy-spelling an additional 
four words and one random number sequence per task. These 
tasks were counterbalanced across participants to avoid order 
effects. While SWLDA was chosen for convenience and its 
proven functionality, it should be noted that the DSC method is 
not classifier-dependent and could be used in conjunction with 
any other classifier as long as the same classifier is used both in 
training and online spelling. 

D. Dynamic Stopping Criterion (DSC) 

The DSC algorithm is illustrated in Fig. 2. This algorithm 
was implemented inside BCI2000 using a row/column P300 
speller paradigm and the SWLDA classifier; however, any par-
adigm and classifier could be used with this algorithm as long 

as the same paradigm and classifier were used for offline (the 
collection of the training data) and online processing. During 
offline processing, illustrated in the top row of Fig. 2, the clas-
sifier responses for target and nontarget character flashes were 
grouped. The training data consisted of 30 target characters for 
each of which five sequences were measured. Thus, the non-
target group would consist of classifier responses to 2250 non-
target flashes (15 nontarget flashes per sequence 5 sequences 
30 target characters) while the target group would consist of 

classifier responses to 300 target flashes. Kernel density esti-
mates (e.g., [23]) using a Gaussian kernel were then calculated 
for each group to estimate the probability density function (pdf) 
of the likelihood of the classifier response given that the target 
character was or was not included in 
the current flash, where indicates the classifier response to 
a flash, and indicates the presence (absence) of a target 
character. 
These participant-specific likelihoods are the only require-

ment for the algorithm to control data collection in real time. 
The online portion of the algorithm is shown in the bottom row 
of Fig. 2. The probability of being the target character is initial-
ized for each character, which can be chosen to reflect a priori  
knowledge regarding the characters likely to be chosen. In our 
implementation, the initial probabilities were set to 1/number of 
characters, i.e., no prior knowledge was assumed. When a flash 
occurs, the classifier calculates a confidence regarding whether 
the flash contained the target character. The likelihood pdfs gen-
erated from the training data are used to estimate the likeli-
hood that the classifier response could have occurred if the flash 
did/did not include the target character, and these likelihoods 
can be used to update the character probabilities. 
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The method for updating the probability that a character is the 
target character based on previous classifier responses is based 
on Bayes rule (e.g., [23]) 

(1) 

where is the current estimate of the character’s proba-
bility of being the target given all of the classifier responses, , 
observed previously; is the prior probability for the char-
acter; is the likelihood of the classifier responses; and 

is the probability of the classifier responses. By the rule 
of total probability (e.g., [24]), the denominator can be replaced 
as follows: 

(2) 

This provides a method for calculating the posterior proba-
bility of the character being the target character after all the 
data has been collected; however, for an online algorithm, the 
posterior probabilities need to be updated after each flash. If 
we consider the sequential arrival of classifier responses to be 

, and we assume that the classifier 
responses are conditionally independent of each other given the 
underlying character probabilities, then at time 

(3) 

Thus, at time , the posterior probability of the character being 
the target character is proportional to the product of the likeli-
hood of the classifier response at time and the posterior prob-
ability of the character being the target character at time 
[25]. From (3), sequential updating of the character probabili-
ties was carried out using the following: 

(4) 

where is the current estimate of the character’s prob-
ability of being the target given all of the classifier responses 
observed previously; is the likelihood of the cur-
rent classifier response , given that the character was/was not 
in the currently flashed set of characters ; and the denom-
inator normalizes the updated probabilities by dividing by the 
sum over all character probabilities. The likelihood used to up-
date the character probability depends on whether the character 
was flashed 

(5) 

TABLE I
 
EFFECT OF TARGET CHARACTER BEING FLASHED/NOT FLASHED
 

This can best be visualized by considering the two cases of 
including/not including the target character (see Table I). 

If includes the target character, the classifier response ide-
ally should be large (see first column). A large classifier re-
sponse results in a high likelihood for and a low like-
lihood for . Since a target was flashed, it is updated 
with the large value while nontargets that were not 
flashed are updated with the small value. Thus, the 
target character’s probability increases while the nontarget char-
acters’ probabilities decrease. Similarly, if does not include 
the target, the classifier response should be small which results 
in a small and a large . However, the target 
character, since it did not flash, is now updated by , 
and the target probability should increase. 
Nontargets are updated with both large and small values of 

, depending on whether or not they flash with the 
target; however, the variability in these update values leads to 
the nontarget character probabilities trending towards lower 
values. After each Bayesian update, the character probabilities 
are compared to a threshold to determine if the target character 
can be selected. The threshold indicates the confidence that the 
correct character has been chosen, and in this study, it was set to 
90%. This threshold is a tradeoff between accuracy and speller 
rate—a higher threshold results in fewer errors but requires 
more data to be collected while a lower threshold requires less 
data but results in more errors. The threshold was chosen to 
encourage a high level of accuracy; however, it is possible that 
a lower level of accuracy would lead to a higher communication 
rate [16]. Once a target character is selected, the process begins 
again for the next target character by reinitializing all of the 
character probabilities. 

III. RESULTS 

By basing data collection on the quality of the data received, 
the DSC method was expected to impact accuracy as well as 
communication rate. In Fig. 3, accuracy, time to complete the 
task, bit rate and theoretical bit rate are plotted for both the DSC 
and SSC conditions. Bit rate provides a measure of communica-
tion rate that considers accuracy, the number of possible target 
characters, and the time required to complete the task (e.g., see 
[26]). Theoretical bit rate differs from bit rate by not including 
intervals between target selection tasks in the calculation of the 
time required to complete the task. The DSC condition provided 
significant improvements in accuracy and communication rate 
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Fig. 3. Comparison of DSC and SSC in terms of (a) accuracy, (b) time to complete the task, (c) bit rate, and (d) theoretical bit rate. Bit rate is a function of 
accuracy, the number of possible target characters, and time required to complete the task (e.g. see [26]). Theoretical bit rate differs from bit rate by excluding the 
time spent in the task that is not devoted to spelling. Note that one participant spelled an extra character under the SSC condition, resulting in a slight increase in 
time to complete the task. Participants are sorted by their SSC accuracy. 

TABLE II
 
GROUP MEANS OF PERFORMANCE
 

(see Table II). The data in Fig. 3(a) indicate that the improve-
ment in accuracy was especially high for participants whose ac-
curacy with the SSC was below 60% correct. Improving accu-
racy for these participants is critical since accuracy below 50% 
makes effective communication with the BCI system unlikely. 
At 50% accuracy, any effort to correct an error through use of 
the backspace is equally likely to lead to another error; thus, an 
improvement in accuracy to above 50% correct potentially tran-
sitions the BCI system from unusable to usable. 
Fig. 3(b) plots the time to complete the task, including in-

tertarget intervals, for each of the participants. For the SSC, 

participants finished spelling five six-character tokens in seven 
minutes (participant 6 spelled one extra character, resulting in 
a slightly higher completion time). The increase in DSC accu-
racy for participants with low SSC accuracy was achieved by in-
creasing the amount of data collected before making a decision 
about the target character, thereby increasing the time required 
to complete the task. However, the corresponding increase in 
accuracy outweighed the increase in task completion time, re-
sulting in an increase in communication rate for many of the par-
ticipants with low SSC accuracy [Fig. 3(c) and (d)]. For partic-
ipants with high accuracy, the DSC reduced the amount of data 
collected, thereby reducing the time  required to complete the  
task. The reduced task completion time coupled with relatively 
unchanged accuracy for these participants resulted in large im-
provements in communication rate. 
The maximum time for task completion that could occur for 

the DSC was 12 min 19 s based on the imposed limit of ten 
sequences. Interestingly, this limit was not reached despite the 
continued poor accuracy of some participants (e.g., participants 
1 and 4). In order to investigate this effect further, the distribu-
tion of the number of flashes to spell each character for the DSC 
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Fig. 4. Number of flashes used to spell each target character for the DSC. On the left, the distribution of flashes that occurred during spelling for each participant is 
plotted. Note that data are presented in terms of flashes rather than sequences since the DSC could end data collection after any flash rather than having to complete 
a sequence. The size of each symbol indicates the number of target characters spelled with a particular number of flashes. For example, the large symbols at 170 
flashes for participants 1–4 indicate that many target characters were spelled after the limit in the number of flashes had been reached. On the right, the results have 
been summed across participant. 

is plotted by participant in Fig. 4. Note that the distribution is 
plotted by flash rather than sequence since data collection with 
the DSC could stop before a sequence had been completed. On 
the left, the size of each symbol indicates the number of target 
characters that were selected by a particular number of flashes, 
e.g., it is apparent that for the first four participants, many of the 
target characters were selected only after the limit of 170 flashes 
(10 sequences 17 flashes/sequence) had been reached. This 
may suggest that a higher limit could have led to further im-
provements in accuracy. It should be noted, however, that even 
for these participants, many target characters were selected with 
far fewer flashes. While generally participants with low spelling 
accuracy required more flashes across all target characters than 
higher performing participants, the number of flashes required 
to select target characters varied widely for each participant. 
Thus, methods that rely on past participant performance to set 
algorithm parameters may be limiting the potential accuracy and 
rate that can be achieved. 
On the right in Fig. 4, the numbers of target characters se-

lected by each flash count are pooled across participants. The 
distribution appears to be bimodal with the majority of target 
characters requiring either 1–5 sequences (17–85 flashes total) 
for selection or ten sequences. Note that no target character was 
selected in less than 11 total flashes, but selection of a target 
character with less than one complete sequence was possible 
and did occur. At the other extreme, a number of target char-
acters were selected only after the limit of ten sequences were 
reached. 
While it might be expected that accuracy would be poor for 

target characters selected only after the maximum number of 
flashes was reached, it is also possible that accuracy would be 
poor for characters selected with a small number of flashes. 
Theoretically, this should not be the case since the threshold 
is  a measure of confidence in the response and should not halt 
data collection until enough data have been collected to make a 
highly confident decision. However, one advantage of collecting 
a larger number of sequences is that if an erroneous response is 

Fig. 5. Proportion of characters correctly spelled for a particular number of 
flashes for the DSC. Note that each proportion is based on a different number 
of target characters. The circle symbol indicates the proportion of characters 
correctly spelled under the SSC condition, and the diamond symbol indicates 
the proportion of characters correctly spelled after the limit of flashes under the 
DSC condition had been reached. Performance tends to be independent of the 
number of flashes with the exception of characters selected after the limit in the 
number of flashes was reached (170 flashes). 

measured (e.g., if a P300 is elicited for a character other than a 
target character), its effect is minimized by the large collection 
of data that correctly contradicts it. Thus, a smaller data collec-
tion could be dominated by a small amount of misleading data. 
To investigate whether this was the case, the target characters 
were grouped by the number of flashes used to select them. For 
each group, the proportion of correctly selected characters was 
calculated and plotted in Fig. 5. The circle symbol indicates the 
proportion of correct characters selected with 85 flashes (five se-
quences) under the SSC condition, while the diamond symbol 
indicates the proportion of correct characters selected after the 
limit of 170 flashes was reached under the DSC condition. As 
expected, accuracy was poor for these target characters. How-
ever, performance appears to be relatively constant otherwise. 
Thus, decisions based on fewer flashes do not appear to be inher-
ently more erroneous than decisions based on more flashes. Fur-
ther, DSC performance is similar to or greater than that achieved 
under the SSC condition. 
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IV. DISCUSSION 

Previous dynamic data collection methods have relied on past 
participant performance either as a group or on an individual 
basis to set the stopping criterion. Measurements from this study 
suggest that such assumptions may limit optimization of ac-
curacy and communication rate. The number of sequences re-
quired to select target characters varied widely for each partic-
ipant, regardless of their average accuracy. By relying on the 
quality of the data to control data collection, the DSC signifi-
cantly improved accuracy and communication rate. These im-
provements were often large. Bit rate was increased by greater 
than 30% and theoretical bit rate by greater than 50% for more 
than half of the participants. In terms of accuracy, of the seven 
participants whose SSC performance was below 50% correct, 
making effective communication unlikely, four of the partici-
pants had an improvement in accuracy to above 60% correct 
with the DSC. 
It is worth considering whether similar levels of performance 

improvement could have been achieved by the SSC if the 
number of sequences for the SSC had been set on an individual 
participant basis, such as was proposed by Townsend et al. 
[6], rather than selecting a constant number for all participants. 
Recent research by Schreuder et al. [27] suggests that this 
would not be the case. In their study, setting the number of 
sequences based on participant performance during training 
rarely resulted in significant increases in performance over a 
constant number of sequences. To consider this point further, 
a post hoc analysis of the training data from this study was 
conducted using written symbol rate (WSR) to estimate the 
optimal number of sequences per participant [6], [28]. WSR 
is a measure of the number of correct characters that can be 
spelled over time and can be estimated offline from training 
data for increasing numbers of sequences [6], [28]. The number 
of sequences that maximizes WSR for each participant in the 
offline training data can then be used to set the number of 
sequences used in the online static measurement paradigm. In 
the post hoc analysis, the number of sequences that maximized 
WSR was determined for each participant. For all but one 
of the participants (participant 26), WSR was maximized by 
five sequences. Thus, relying on WSR to set the sequences 
for the SSC would have left the results of this study relatively 
unchanged. 
Since only five sequences of data were collected during 

training, the WSR analysis could not estimate whether more 
than five sequences would have been considered optimal for 
some participants, as is likely for those with lower SSC ac-
curacy. However, an increase in sequences cannot necessarily 
be assumed to result in an increase in accuracy for these 
participants. In Krusienski et al. [17], two of the participants 
with the lowest accuracy experienced little to no benefit from  
increasing the number of sequences above five. Further, several 
studies have observed plateaus in performance as the number 
of sequences increases [13], [29]. However, based on Fig. 4, it 
may be possible to hypothesize under what conditions the SSC 
would have resulted in accuracy similar to that of the DSC and 
consider whether the DSC would still be expected to improve 
communication rate over the SSC. One hypothesis might be 

that to achieve the DSC accuracy, each target under the SSC 
would need, at minimum, the number of sequences used by 
the DSC. Since the SSC by definition uses a constant number 
of sequences across all targets, the SSC number of sequences 
would have to be set to the maximum number of sequences used 
by the DSC to ensure that all targets are classified by at least 
their minimum  number of sequences. For the majority of lower 
accuracy participants, the maximum number of sequences used 
by the DSC was ten. Assuming the same accuracy between 
the SSC and the DSC, using ten sequences for the SSC would 
result in much lower communication rates than those observed 
for the DSC. 
Another hypothesis might be that the DSC accuracy would 

be achieved if the number of sequences for the SSC had been 
set to the average number of sequences used by the DSC. The 
reasoning might be that while some targets would be classified 
with too few sequences, the classification of others would 
be improved by the increased data collection. The number 
of flashes that would have been collected by the SSC if the 
number of sequences were increased to the average number of 
sequences used by the DSC was calculated for each participant 
and compared to the actual number of flashes used by the  DSC.  
In all cases, the DSC used fewer flashes total. Thus, while this 
issue deserves further investigation, initial results suggest that 
increasing the number of sequences for the SSC would not 
result in the same level of improvement seen by the DSC. 
Direct comparisons between the improvements resulting 

from the DSC and those observed in the literature for other 
proposed dynamic data collection techniques are difficult 
given differences in paradigm and subject pool. Given those 
caveats, however, some comparisons are considered. Schreuder 
et al. [27] compared four dynamic stopping methods to a 
static method with and without preselection of the number of 
sequences per participant. They considered five ERP-based 
spellers, two of which used auditory stimuli and three of which 
used visual stimuli. The rate at which symbols were correctly 
spelled for the visual-stimuli-based spellers using static data 
collection ranged between 1 and 1.5 symbols/min. Dynamic 
methods mostly ranged between 1 and 2 symbols/min, although 
some performed worse with specific paradigms. Calculating 
symbol rate as defined in [27],  the SSC  had a rate  of  1.7  
symbols/min and the DSC had a rate of 3 symbols/minute. 
This suggests that the DSC may perform as well as or better 
than previously considered techniques. The dynamic stopping 
technique used in Jin  et al. [13] resulted in an improvement in 
theoretical bit rate from approximately 20 to 40 bits/min. The 
average accuracy of the subject pool for the static method was 
90% which is much higher than average accuracy of the subject 
pool used in this study. However, if results are restricted to 
subjects scoring 70% correct or better with the SSC, then a 
similar improvement  is  observed: 29 bits/min to 46 bits/min.  
Thus, the DSC seems comparable in terms of performance 
gains and may offer some advantages over current dynamic 
stopping techniques, specifically that subject-specific data are  
not required to set the stopping criterion and that implementa-
tion of the algorithm is independent of classifier or paradigm. 
Schreuder et al. [27] noted in their comparison of dynamic 

stopping techniques that performance improvements tended to 
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be limited to those participants with good performance while 
the DSC algorithm presented in this study improved accuracy 
for all of the participants with SSC accuracy below 60%. How-
ever, one limitation of this algorithm was that for some partic-
ipants, the improved accuracy level still remained well below 
the effective communication level (e.g., participants 1, 3, and 
4). These participants also had the greatest number of target 
characters selected only after the limit on the number of flashes 
had been reached. While it is possible that for these participants 
accuracy would have been further increased had the limit for 
the DSC been set to a higher number of flashes, there may be 
other underlying causes for the poorest performance that cannot 
be corrected by increasing data collection to improve  SNR.  Re-
search suggests that the electrodes used for controlling the BCI 
(e.g., [21]) and the paradigm (e.g., [6], [13], [30], and [31]) 
can have a significant impact on participants’ performance. It 
is possible that electrode and paradigm selection coupled with 
the proposed algorithm might jointly improve performance to 
an effective communication level for the participants with the 
lowest accuracy. 
In addition to these options, the algorithm itself might be op-

timized in several ways. The choice of threshold is a tradeoff 
between accuracy and speller speed, with higher thresholds re-
ducing speller speed but tending to increase accuracy. In this 
study, the threshold was set to a constant, participant-indepen-
dent high value; however, it might be possible to optimize the 
threshold to maximize bit rate for each participant. In principle, 
the optimal threshold can be estimated from training data if the 
training data can provide an accurate estimate of the function 
relating threshold to spelling accuracy. In practice, offline sim-
ulations conducted prior to this study using previously collected 
data [32] suggested that using the estimates of optimal threshold 
derived from the training data did not lead to the best communi-
cation rates in the test data. This might be due to inadequate 
training data or it might be due to the effects observed here 
and in Schreuder et al. [27]; user performance is variable and 
training data may not adequately reflect future performance. In 
either case, further investigation is warranted to determine how 
the threshold should be set for this algorithm in order to maxi-
mize performance. 
Another technique for optimization of the algorithm would be 

to use language models to initialize the character probabilities. 
Before data collection, each character is given an initial prob-
ability of being the target character. In this study, the character 
probabilities were set with no prior knowledge assumed. How-
ever, knowledge about the language could be incorporated. For 
example, if a “q” has been spelled, then in English it is highly 
likely it will be followed by a “u”. Thus, the initial probabilities 
could be set  based on previously  spelled characters and  word  
frequencies. The use of language models has been proposed for 
P300 spellers [1], and several studies have investigated the in-
corporation of language models into speller systems with posi-
tive results [33], [34]. 
Another adaptation of the algorithm that might improve its 

performance would be to calculate posterior probabilities of 
rows and columns containing the target rather than probabilities 
for each character. By updating the posterior probabilities on 

a character basis, the nontarget characters that are flashed 
with the target character are “incorrectly” updated with a large 
likelihood of being the target character since there is only one 
response for the entire set. These characters are also updated 
“correctly” whenever they are flashed without the target, ul-
timately resulting in their rejection as targets; however, this 
technique of updating with both large and small likelihoods of 
being the target may slow the process of determining the target 
character. Calculating posterior probabilities based on rows 
and columns, the correct row and column (those containing the 
target) would be updated with a large likelihood of containing 
the target while all other rows and columns would be updated 
only with small likelihoods of containing the target. The selec-
tion of a row and column would then define the target character. 
This technique was not considered here since it would limit 
the algorithm to only those paradigms that incorporate an 
intersecting-set approach to target classification; however, this 
technique might provide further performance improvements 
for row/column paradigms. 
The information in the algorithm might also be used to im-

prove the speller paradigm itself. Since the posterior proba-
bilities of the characters being the target character are avail-
able through the dynamic stopping algorithm, it might be pos-
sible to use this information to select the next stimulus to max-
imize information gain rather than rely on random presentation 
of stimuli (e.g., [35]). However, converting the paradigm from 
random stimulus presentation will necessarily require consid-
eration of the factors that influence the elicitation of P300 re-
sponses such as the need for the target to be rare and unexpected 
(e.g., [22] and [36]–[38]). 
While the algorithm was demonstrated with a row/column 

speller paradigm and a SWLDA classifier, the algorithm itself 
is paradigm- and classifier-independent and could easily be 
adapted to other decision-based BCI. This study has demon-
strated the potential for an algorithm that adapts data collection 
based on the  quality of data being collected rather than re-
lying on assumptions based on participants’ prior performance 
resulting in significant improvements in accuracy and commu-
nication rate. 
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