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The P300-based brain—computer interface (BCI) is an extension of the oddball paradigm, and can facili-
tate communication for people with severe neuromuscular disorders. It has been shown that, in addition
to the P300, other event-related potential (ERP) components have been shown to contribute to suc-
cessful operation of the P300 BCI. Incorporating these components into the classification algorithm can
improve the classification accuracy and information transfer rate (ITR). In this paper, a single character
presentation paradigm was compared to a presentation paradigm that is based on the visual mismatch
negativity. The mismatch negativity paradigm showed significantly higher classification accuracy and
ITRs than a single character presentation paradigm. In addition, the mismatch paradigm elicited larger
N200 and N400 components than the single character paradigm. The components elicited by the presen-
tation method were consistent with what would be expected from a mismatch paradigm and a typical
P300 was also observed. The results show that increasing the signal-to-noise ratio by increasing the ampli-
tude of ERP components can significantly improve BCI speed and accuracy. The mismatch presentation
paradigm may be considered a viable option to the traditional P300 BCI paradigm.
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1. Introduction

Brain—computer interface (BCI) technology pro-
vides people with a means of communication, or
a method to send commands to external devices
in real time. Noninvasive BCIs typically rely on
the scalp-recorded electroencephalogram (EEG).} 16
The P300-based BCI was introduced by Farewell and
Donchin.!” They showed that the P300 event-related
potential (ERP) could be used to successfully select a
letter when the subject focused on a target letter and
counted how many times the letter flashed. However,
it is necessary to average several ERPs for the P300
BCI to obtain high accuracy. The major deleterious
side effect of averaging is that it increases the amount
of time needed to make a character selection, thereby
decreasing information transfer rate (ITR).'® 20
Many studies have examined ways to improve
P300 BCI performance. Several studies have focused
on classifier optimization.?" 26 Lenhardt et al.2” and

1.28 improved classification accuracy and ITR

Jin et a
using strategies that dynamically adapted the num-
ber of trials used to make character selections. Zhang
et al.,3! presented spatiotemporal discriminant anal-
ysis to decrease the amount of time needed for offline
training. In addition, Lu et al.,?? and Jin et al.3°
presented generic model strategies that obviated the

need for offline training. In addition to classification

Feedback: Feedback:
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methods, several studies have focused on reducing
the overlap of target epochs and decreasing interfer-
ence created by items adjacent to the target.273234
Target-to-target interval and inter-stimulus interval
(ISI) have also been used to optimize the stimulus
sequence.32:35-38

In addition to developing new classification meth-
ods, novel stimulus presentation paradigms have
been proposed. In general, these paradigms have
been developed to exploit ERP components in addi-
tion to the P300, and to enhance the difference
between attended and ignored events. The majority
of spatiotemporal features selected by classification
algorithms occur at locations and latencies consis-
tent with the P300.3° However, stimulus parameters
can be manipulated so that additional ERP compo-
nents will be elicited, and contribute to the classifica-
tion algorithm. For example, Hong et al.*° replaced
flashes with motion stimuli that could elicit N200s,
which could provide performance that was superior
to a conventional P300 BCI paradigm. Jin et al.*!
combined motion and flash stimuli, which increased
the amplitude of the N200 and P300 components and
resulted in higher accuracy and IRT.

The mismatch negativity (MMN) was first
demonstrated by Nidténen et al.*? using auditory
stimuli. In the experiment, a rare deviant (D) sound

Feedback:

SC-Pattern

MSC-Pattern
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Fig. 1. (Color online) The display presented to the subjects. (a) The 3 X 4 matrix used in the study with 12 commands
(Hashes). (b) The green rectangle indicated the target character for the current trial. (c) Top: example of the SC-pattern.
Bottom: an example of the MSC-pattern. Feedback is presented at the top of the screen.
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was interspersed among a series of frequent standard
(S) sounds (e.g. S/S/S/S/S/D/S/S/S/D/S/S/S/S/
S, “/” denotes the ISI). The MMN paradigm has
been used as a two-choice auditory-based BCIL.43:44
The visual stimulus modality also elicits a MMN
(i.e. the vVMMN).#551 Consistent with the auditory
MMN, the vMMN elicits an N200 and it also elicits a
large P300.4647 Until now, the vMMN has not been
used in the context of a BCI task. In this paper,
a VMMN presentation paradigm is compared to a
single character paradigm. The typical visual P300
BCI paradigm presents the subject with a matrix of
items and the rows and columns of the matrix flash
at random.!” Instead of flashing groups of rows and
columns, the single character pattern (SC-pattern)
flashes a single matrix item.?? In this study, we com-
pare an SC-pattern to a mismatch single charac-
ter pattern (MSC-pattern; see Fig. 1 for example
stimuli). The MSC-pattern was designed to evoke
a larger MMN (i.e. N200) as compared to the SC-
pattern. Our hypotheses are that the MSC-pattern
will increase N200 and P300 amplitudes, and that the
MSC-pattern will increase P300 BCI performance.

2. Method and Materials
2.1. Subjects and stimuli

Ten healthy subjects (eight male and two female,
aged 21-25, mean 23.1+1.5) were paid to participate
in the study. All subjects’ native language was Man-
darin Chinese, and all subjects were familiar with
the Western characters used in the display. Three
subjects had used a BCI before this study. During
data acquisition, subjects were asked to relax and
avoid unnecessary movement.

Subjects were seated about 85cm in front of a
monitor that was 30cm long and 48 cm wide. The
display presented to the subjects is shown in Fig. 1.
Twelve items were presented in a 3 x 4 arrange-
ment. The subjects’ task was to focus attention to
the desired character in the matrix and count the
number of times the letter ‘D’ flashed directly above
the character. Before the experiment, the task was
explained and demonstrated to the subjects. The
experiment was started when the subject was able
to properly perform the task and had no additional
questions.

In the SC-pattern, the letter D (i.e. deviant)
was presented at random above each of the 12
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items (Fig. 1(c), top panel). The MSC-pattern was
the same as the SC-pattern with one exception.
When the D was flashed above one of the items,
a gray S (standard) flashed above the other 11
items (Fig. 1(c), bottom panel), thereby produc-
ing a “visual mismatch”. In each trial, the ISI was
100 ms and the stimulus onset asynchrony (SOA) was
300 ms. Each trial consisted of 12 flashes. That is, the
letter D (deviant) was presented above all 12 items
of the display exactly one time.

2.2. Experiment setup, off- and online
protocols

EEG signals were recorded with a g.Hlamp and a
g.EEGcap (Guger Technologies, Graz, Austria) with
a sensitivity of 1001V, band pass filtered between
0.1 and 60 Hz, and sampled at 512 Hz. We recorded
from EEG electrode positions Fz, Cz, Pz, Oz, F3,
F4, C3, C4, P7, P3, P4, P8, O1 and O2 from the
extended International 10-20 system.22:46:50:53 The
right mastoid electrode was used as the reference,
and the front electrode (FPz) was used as a ground.

During offline calibration, there were 16 trials per
trial-block (i.e. 12 flashes per trial*16 trials = 168
flashes per trial-block); thus, each target item flashed
16 times during each trial-block. Each run consisted
of five trial-blocks, each of which involved a different

One flash

 m— N

‘{( One trial (12 flashes) }
€ >

Spell one character or output one character
after one trial block

<|' € One trial block (16 offline trials or variable number > }

of online trials)

trlal block

e}

{ € One run (5 offline trial blocks or >

24 online trial blocks)

Fig. 2. One run of the experiment for online and offline
experiments.
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target character. During online testing, the number
of trials per trial-block was variable, because the sys-
tem optimized performance, as described in Sec. 2.5.
Copy spelling was used in the off- and online phases
of the study; a cue (green rectangle; Fig. 1(b)) was
shown for 2s before each trial-block to orient the
subject to the current target item.

Subjects completed three offline runs for the SC-
pattern and three runs for the MSC-pattern (each
run contained five trial-blocks). The order of the
two paradigms was counterbalanced across subjects.
After each paradigm, subjects were given a five-
min break. Following the offline experiment, for each
paradigm, there was one online run that consisted of
24 trial-blocks (see Fig. 2). The paradigms were pre-
sented in the same order as the offline runs. Between
each online experiment, subjects were given a two-
min break. Each subject completed all of the condi-
tions in one experimental session.

2.3. Feature extraction procedure

A third-order Butterworth band pass filter was used
to filter the EEG between 0.1 and 30Hz.5455 The
first 800ms of EEG after presentation of a single
stimulus was used to extract the feature from each
channel. A pre-stimulus interval of 100 ms was used
for baseline correction of single trials in ERP anal-
ysis. Raw feature of each channel was downsampled
from 512 to 7T3Hz by selecting every seventh sam-
ple from the filtered EEG. The raw feature matrix is
14 x 406 for each single flash. Here, “14” is the num-
ber of the channels. The size of the feature vector is
14 x 58 (14 channels by 58 time points).

2.4. Classtfication scheme

Bayesian linear discriminant analysis (BLDA) is an
extension of Fisher’s linear discriminant analysis
(FLDA). Data acquired offline were used to train the
classifier using BLDA and obtain the classifier model.
This model was then used in the online system. The
item receiving the highest classifier output value was
identified as the target character. BLDA uses regu-
larization to prevent overfitting to high dimensional
and possibly noisy datasets. Using a Bayesian anal-
ysis, the degree of regularization can be estimated
automatically and quickly from training data with-
out the need for time consuming cross-validation.?2
Assume that the target ¢ and feature vectors x are

linearly related with additive white Gaussian noise n:
t=wlx+n. (1)

Equation (3) is the likelihood function for the weight
w used in regression:

p(D|B,w) = <%> ' exp (_ngW - t||2>.
(2)

Here, t denotes a vector containing the regression
targets, X denotes the matrix that is obtained from
the horizontal stacking of the training feature vec-
tors, D denotes the pair {X, t}, 8 denotes the inverse
variance of the noise, and N denotes the number of
examples in the training set.

In the Bayesian setting, a prior distribution was
specified for the latent variables w as:

p(w|a) = (%) : (%) : exp <—%WTI/<04)W>.
(3)

I’(«) is a (D+1)-dimensional diagonal matrix (D
is the size of the features).

a 0 - 0
0 a -+ 0

'a)=1|. . - (4)
0 0 - ¢

The posterior distribution can be computed by
using Bayes rule:
p(D B, w)p(w | )
p(w|B,a,D) = NG
\ ToD 7. wplw i
The predictive distribution is obtained by multi-
plying Eq. (3) for a new input vector and Eq. (6):

p(i] B, %, D) = / p(E| B, w)p(w | B, @, D)dw.
(6)

The predictive distribution can be characterized by

its mean p and its variance o20?:
p=m’%, (7)
1
o? = 5 +x7'Cx. (8)

All the details could be found in Ref. 22.
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2.5. Adaptive system settings

The number of trials per average was automatically
selected based on the classifier output. After each
trial, the classifier would determine the target char-
acter based on data from all trials in the specific
trial-block. If the classifier chose the same item after
two successive trials, the trial-block was terminated
and the selected item was presented to the subject
as feedback. For example, if the classifier selected
“A” after the first trial, a second trial was presented.
The data from both trials was averaged, and if the
classifier selected “A” a second time no additional
trials would be presented. If the classifier did not
select “A”, another trial would begin, and so on
until cha (n) = cha (n — 1) or until 16 trials were
presented. After 16 trials, the classifier would auto-
matically select the item with the highest classifier

output.?®

2.6. Subjective report

After completing the last run, each subject was
asked two questions about each of the two con-
ditions. These questions could be answered on a
1-5 scale indicating strong disagreement, moder-
ate disagreement, neutrality, moderate agreement, or
strong agreement. The two questions were:

(i) Were you attracted to the background at the tar-
get location?

(ii) Did you perceive a distinct change in the shape
of the matrix each time a flash occurred?

The questions were asked in Mandarin Chinese.

3. Results

Figure 3 shows the grand averaged amplitude of
target stimuli for all subjects and all 14 electrode
locations used for classification. Figure 3 clearly
shows notable differences between the SC- and MSC-
patterns. Averaged across all subjects, amplitude
and latency values for the components of interest (i.e.
N200, P300 and N400) are shown in Table 1.

Mean amplitude of the averaged ERPs (£25ms)
were compared between the two patterns using
paired samples t-tests (see Fig. 4). Electrode loca-
tions P8 and Oz were selected for the N200 anal-
ysis because MMN is typically largest in occipital
areas.t749:50:56 Flectrode location Pz was selected

P300 Brain—Computer Interface

for the P300 analysis because is commonly largest at
Pz.!7 Electrode location Cz was selected for the N400
analysis because it typically contains the largest
N400.57

Given that the N200 was compared at two elec-
trode locations, a Bonferoni-Holm correction was
used (a = 0.025). At electrode P8, although 7 of 10
subjects showed larger N200s for the MSC-pattern,
a statistically significant difference was not observed
(t = 2.2, p > 0.025, Fig. 4(a)). At electrode Oz,
N200 amplitude of the MSC-pattern was significantly
higher than the SC-pattern (t = 3.7, p < 0.025,
Fig. 4(b)). At electrode Pz, the differences in P300
amplitude for the two conditions did not reach sta-
tistical significance (t = 1.6, p = 0.1, Fig. 4(c)). At
electrode Cz, the amplitude of the N400 for the MSC-
pattern was significantly higher than the SC pattern
(t = 2.5, p < 0.05, Fig. 4(d)).

Figure 5 shows the topographic map and time
energy figure of r-squared values during presenta-
tion of the MSC-pattern and the SC-pattern. It can
be seen that the MSC-pattern produced higher -
squared values than the SC-pattern for each of the
three components. The average P300 r-squared val-
ues were significantly higher for the MSC-pattern
than for the SC-pattern (¢t = 3.8, p < 0.05). As a
discriminant index, the pointwise biserial correlation
coefficient is defined as

N1Ny
re) = N1+ N
mean{x; | l; = 1} — mean{z; |l; = 2}
' std{z; [1l; = 1,2}

;9

where N7 and Ny are the number of variables belong
to the class 1 and class 2, respectively, z; and [; are
the value and class label of the ith variable and r-
squared value is equal to the square of r(z).

Table 2 shows online classification accuracy, bit
rate and number of trials for each paradigm. Paired
samples t-tests were used to examine differences
between the MSC- and SC-patterns. Classification
accuracy and bit rate for the MSC-pattern were sig-
nificantly higher than the SC-pattern (¢t = 3.14,
p < 0.05; and ¢t = 3.79, p < 0.05, respectively). The
difference in the number of trials presented was not
statistically significant (¢ = 1.3, p > 0.05).

Table 3 shows subjects’ responses to the two
questions. A paired-samples t-test was used to
examine mean differences between the MSC- and

1550011-5
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Fig. 3. Grand averaged ERPs of target stimuli across subjects 1-10 over 14 sites. Zero point is the beginning point of
the target flash. The fringe of the shadow in each figure is the standard deviation of the ERP amplitude.

Table 1.

Averaged peak values of N200 at P8 and Oz, P300 at Pz and
N400 at Cz. “SC-P” denotes the single character pattern and “MSC-P”
denotes the mismatch single character.

Amplitude (©V)

Latency (ms)

ERP  Electrodes SC-P MSC-P SC-P MSC-P
N200 P8 —2.524+0.47 —3.124+0.64 262+19 278421
N200 Oz —1.64+0.83 —2.38+1.01 241 4+51 245478
P300 Pz 3.37+£1.36 4.18 +1.01 372437 397112
N400 Cz —3.62+1.30 —5.154+2.38 576 =63 571 +48
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Fig. 4. Amplitude box plots for each subject at four electrode locations (P8, Oz, Pz and Cz). Amplitude is averaged
from the maximum peak value £25ms for each electrode location. For each subject, the plot on the left represents the

value for the SC-Pattern, and the plot on the right represents values for the MSC-pattern.
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Table 2. Online classification accuracy, bit rate and average number of trials for each subject. Acc =
classification accuracy, RBR = raw bit rate (bits/min), AVT = average number of trials used to classify each
character, SC-P = single character pattern, MSC-P = mismatch single character pattern, Avg is average and
STD is standard deviation.

S1 S2 S3 S4 S5 S6 ST S8 S9  S10  Avg=£STD

Acc (%) SC-P 95.8 91.7 100 100 95.8 70.8 91.7 100 83.3 833 91.3£95
MSC-P 958 100 100 100 100 83.3 100 100 100 95.8 97.5+5.3

RBR (bit/s) SC-P 245 214 261 266 245 11.2 189 247 172 16.0 21.1+5.1
MSC-P  24.1 235 26.6 287 287 17.2 27,5 26.1 243 245 251434

AVT SC-P 217 225 229 225 217 254 254 242 229 246 2.34+0.14
MSC-P 221 254 225 208 208 229 217 229 246 217 225+0.15

Table 3. Subjects’ responses to two questions for each of the two patterns. IMP =
question 1, SHC- = question 2, SC-P = single character pattern, MSC-P = mismatch
single character pattern, Avg = average and STD = standard deviation.

S1 S2 S3 S4 S5 S6 ST S8 S9 S10 Avg£STD

IMP SC-P 2 3 3 2 3 2 2 2 3 3 25+0.5
MSC-P 4 4 5 5 5 4 5 4 4 4 44=£05
SHC SC-P 2 3 3 3 3 3 2 3 1 3 2.6 0.7
MSC-P 4 4 5 4 5 4 4 4 4 5 4.3+0.5
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SC-patterns. Subjects reported having a stronger
perception of the target stimulus in the MSC-pattern
condition than in the SC-pattern condition (¢ = 8.1,
p < 0.05). Table 3 also shows that the subjects
reported a stronger perception of shape change in
the MSC-pattern condition than in the SC-pattern
condition (¢t = 8.0, p < 0.05). In fact, all of the sub-
jects reported that the background of the SC-pattern
did not produce a perceived change in shape.

4. Discussion

In this study, we incorporated a vMMN presenta-
tion method into the P300 BCI. The visual MSC-
pattern presented a “D” (deviant) above one item
in the matrix and an “S” (standard) above all of
the other items. The performance and ERP com-
ponents of the MSC-pattern were compared to the
performance and ERP components of a SC-pattern.
The SC-pattern was identical to the MSC-pattern
except that the Ss were not presented. Thus, the
SC-pattern is equivalent to the presentation method
used in Ref. 52. As hypothesized, consistent with an
MMN, N200 amplitude was significantly higher in
the MSC-pattern than in the SC-pattern. In addi-
tion, classification accuracy and bit rate were signif-
icantly higher for the MSC-pattern. N400 amplitude
was also statistically higher in the MSC-pattern. It
is probable that the improved performance is due to
the significant increases in N200 and N400 amplitude
elicited by the MSC-pattern.

The resultant data produced several noteworthy
findings. First, consistent with the MMN literature,
the ERP data showed that a visual MMN was elicited
when a stimulus was incongruent with the sensory
memory trace of a standard stimulus.*®:°%:59 Previ-
ous research has shown that the MMN will not be
elicited without establishing a predictive model of
the standard stimulus.®% In this study, multiple pre-
sentations of the standard (S) stimulus at the tar-
get location established a predictive model of the
standard stimulus, and the model was disrupted
by presentations of the target (D) stimulus. The
results showed that N200 amplitude for the MSC-
pattern was significantly larger than the N200 for
the SC-pattern, suggesting that a predictive model
of the expected stimulus was established. Moreover,
all of the subjects reported that the target stimulus
was more salient for the MSC-pattern than for the

P300 Brain—Computer Interface

SC-pattern,®! this too provides additional support
for the establishment of a predictive model of the
standard (S) stimulus. Second, the two paradigms
produced statistically similar P300s. This finding
is expected because both paradigms should elicit
a P300. The P300 reflects broad recognition and
memory-updating processes that reflects identify-
ing an attended to event and context updating
processes®?62°6%: the two paradigms are equivalent
in terms attending to target stimuli and context
updating. Third, the N400 is commonly elicited by
unexpected words in sentences (e.g. see Ref. 65).
In this experiment, we had no a priori reason
to expect significantly larger N400s in the MSC-
pattern. However, the results showed that the MSC-
pattern elicited significantly larger N400s than the
SC-pattern. A possible explanation for this finding
is that the MSC-pattern produced a coherent pat-
tern that provided a clear mismatch of shape, which
did not exist in the SC-pattern. This explanation is
consistent with the findings of Szfics et al.>3; they
reported that an N400 was elicited by category and
shape mismatches. Similar results were reported by
Wang et al.% In their experiment, subjects were
shown four different types of stimulus pairs: the stim-
uli could match on color and shape features (match),
match on color and have a different shape (shape mis-
match), match on shape and have a different color
(color mismatch), or both the shape and color could
be different (conjunction mismatches). The results
showed that the color mismatch and shape mismatch
conditions produced larger N400s. This finding can
be generalized to the present experiment. A shape
mismatch was present in the MSC-pattern condi-
tion but not in the SC-pattern condition. In addi-
tion to the presence of the shape mismatch, subjects
reported a perception of shape change in the MSC-
pattern, which presumably increased the amplitude
of the N400.

5. Conclusion

The P300 BCI is a modified version of the classic
oddball paradigm. In this paper, a modified ver-
sion of the MMN paradigm was incorporated into
the P300 BCI. In comparison to a standard P300
BCT task, the MMN modification performed signif-
icantly better in terms of accuracy and bit rate.
The stimuli in this study were single characters,

1550011-9
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whereas most P300 BCI paradigms simultaneously
present several characters. The primary advantage of
presenting groups of characters is an increase in the
overall speed of the system. Therefore, we suggest
that future research should be conducted to deter-
mine if these results can generalize to groups of char-
acters. As P300 BCI technology is transitioned to
people with severe motor disabilities, the MMN pat-
tern may provide higher rates of communication than
a standard P300 BCI.
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