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Abstract— A brain-computer interface (BCI) is a device that
provides an alternate non-muscular communication/control chan-
nel for individuals with severe neuromuscular disabilities. The
P300 event-related potential has been demonstrated to be a reli-
able signal for controlling a BCI. The ultimate goal is to continue
to improve the classification speed and accuracy of a P300-based
BCI. The method of common spatial patterns (CSP) has proven
success with sensorimotor rhythm-based BCIs and, with some
modifications, can also be used to accurately classify the P300.
The present method, Common Spatio-Temporal Patterns (CSTP),
extends CSP by incorporating time-delay embedding to extract
the prominent spatio-temporal patterns corresponding to each
class. The results indicate that CSTP is capable of identifying
a decomposition subspace that accurately classifies the P300. In
addition, this subspace can be visualized to provide useful insight
regarding the discriminable spatio-temporal characteristics of the
P300.

I. INTRODUCTION

A brain-computer interface (BCI) is a device that uses brain

signals to provide a non-muscular communication channel

[20], particularly for individuals with severe neuromuscular

disabilities. The P300 event-related potential, evoked in scalp-

recorded electroencephalography (EEG) by external stimuli,

has proven to be a reliable response for controlling a BCI

[7]. Recent studies have demonstrated that a P300-based

BCI trained on a limited amount of data can serve as an

effective communication device [2][15][16]. In addition, more

advanced feature extraction and classification procedures have

been implemented, greatly improving the classification per-

formance beyond those reported by Farwell and Donchin [7].

Several classification techniques have demonstrated notable

performance for the P300 Speller, including stepwise linear

discriminant analysis [2][11][15], support vector machines [9],

wavelets [1] and matched filtering [16]. This recent progress

has verified the capabilities of P300-based BCI systems and

provided the impetus for efforts to improve the speed and

accuracy performance of the paradigm.

This study extends the method of common spatial patterns

(CSP) for application to P300 classification. By incorporating

time-delay embedding and non-centered covariance matrices

into CSP, the prominent spatio-temporal components can be

identified and visualized from the resulting decomposition.

These components differ from simple ensemble averaged

waveforms in that they represent the spatio-temporal features

that provide the best separation between the two classes in

terms of variance. Therefore, CSTP can be used to provide

Fig. 1. The 6x6 matrix used in the current study. A row or column flashes for
100 ms every 175 ms. The letter in parentheses at the top of the window is the
current target letter ’D’. A P300 should be elicited when the fourth column or
first row is flashed. After the flash sequence for a character epoch, the result
is classified and online feedback is provided directly below the character to
be copied.

a full spatio-temporal visualization of the prominent patterns

attributed to each class, as well as a subspace decomposition

to aid classification.

The P300 Speller

The P300 Speller described by Farwell and Donchin [7]

presents a 6 X 6 matrix of characters as shown in Figure 1.

Each row and each column are flashed in a random sequence.

The user focuses attention on one of the 36 cells of the matrix.

The sequence of 12 flashes, 6 rows and 6 columns, consti-

tutes an Oddball Paradigm [6] with the row and the column

containing the character to be communicated constituting the

rare set (targets), and the other ten flashes constituting the

frequent set (standards). Items that are presented infrequently

(the rare set) in a sequential series of randomly presented

stimuli will elicit a P300 response if the observer is attending

to the stimulus series. Thus, the row and the column containing

the target character will elicit a P300 when flashed, because

this constitutes a rare event in the context of all other character

flashes.
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II. COMMON SPATIO-TEMPORAL PATTERNS

The method of common spatial patterns (CSP) [8][10]

determines an optimal set of spatial filters for discriminating

between two classes. It has proven successful for sensorimotor

BCI applications [4][13][18][19], but can also be modified to

handle non-oscillatory signals such as slow cortical potentials

[3]. However, standard CSP does not consider the short-time

temporal characteristics of the data, such as the phase rela-

tionships between channels and frequency bands. The methods

of common spatio-spectral patterns (CSSP) [12] and common

sparse spectral spatial patterns (CSSSP)[5] extend the spatial

filtering approach to include time delay embedding in order

to create a more flexible spatial-spectral filter. Because the

filtering matrices produced by these methods are temporally

sparse, it is not as straightforward to extract the representative

spatio-temporal patterns for visualization purposes.

The method of Common Spatio-Temporal Patterns (CSTP)

presented here also utilizes time delay embedding. In this

case, uniform temporal sampling is used to construct the

filtering matrix, enabling a more complete visualization of the

discriminable spatio-temporal patterns for the two classes.

The CSP decomposition of a feature matrix is given as:

Y = WX (1)

where X is an N feature × T observance matrix, W is an

L × N matrix (L≤N) whose L rows represent the individual

components of the decomposition, and Y is an L × T matrix

subspace of X . For a two-class problem, W can be deter-

mined such that the resulting projections corresponding to the

extreme eigenvalues of the transformed covariance matrices

have maximal variance for one class and minimal variance for

the other class. First, for the two classes (1 and 2), the class-

labeled observations are sorted by the respective class and the

class-specific covariance matrices are determined:

Σ1 = X(1)X
T

(1) and Σ2 = X(2)X
T

(2) (2)

Since the P300 is characterized by amplitude deflections

relative to the baseline EEG, the non-centered covariance

matrices [3] should be computed in this case. The object

of CSP is to determine the transformation W which creates

projections that simultaneously maximize the variance for one

class and minimize the variance for the other:

WΣ1W
T = D and WΣ2W

T = I − D (3)

where D is a diagonal matrix with elements in [0,1]. This can

be accomplished through simultaneous diagonalization of the

two covariance matrices. First, a whitening transformation is

performed:

P (Σ1 + Σ2)P
T = I (4)

Using spectral theory, the eigenvalue decomposition is then

performed for the transformed classes:

PΣ1P
T = RDR

T
and PΣ2P

T = R(I − D)RT (5)

where the columns of R are the eigenvectors and the diagonal

elements of D and (D − I) are the eigenvalues of classes

1 and 2, respectively. Note that the maximum eigenvalues

for one class correspond to the minimum eigenvalues for the

other class. By selecting only the eigenvectors corresponding

to the largest and smallest eigenvalues that provide the best

discrimination between classes, the subspace projection matrix

is defined as:

W̃ = R̃
T
P (6)

For standard CSP analysis of EEG, the features of X

are simply the instantaneous bandpass filtered voltages at

each electrode. For CSTP, the features are the concatenation

of time-windowed voltages for each electrode. The actual

EEG patterns corresponding to the two mental states can be

visualized by inverting the filtering matrix W .

III. DATA COLLECTION AND PROCESSING

A. Participants

Seven able-bodied people (six men and one woman ages

24-50) participated in this study. The participants varied in

their previous BCI experience, but all participants had either

no experience or less than 10 sessions with a P300-based

BCI system. The study was approved by the New York State

Department of Health Institutional Review Board, and each

participant gave informed consent.

B. Task, Procedure, and Design

The participant sat upright in front of a video monitor and

viewed the matrix display. The task was to focus attention on

a specified letter of the matrix and silently count the number

of times the target character flashed, until a new character

was specified for selection. All data was collected in the copy

speller mode: words were presented on the top left of the video

monitor and the character currently specified for selection was

listed in parentheses at the end of the letter string (see Figure

1). Each session consisted of nine experimental runs; each

run was composed of a word or series of characters chosen

by the investigator. This set of characters spanned the set of

characters contained in the matrix and was consistent for each

participant and session. The rows and columns were flashed

for 100 ms with 75 ms between flashes. One character epoch

(i.e., one trial) consisted of 15 flashes of each row and column.

Each session consisted of 36 character epochs, equivalent to

6480 stimuli (row/column flashes).

C. Data Acquisition

The EEG was recorded using a cap (Electro-Cap Interna-

tional, Inc.) embedded with 64 electrode locations distributed

over the entire scalp, based on the International 10 - 20 system

[17]. All 64 channels were referenced to the right earlobe, and

grounded to the right mastoid. The EEG was bandpass filtered
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Fig. 2. The electrode montage used in the current study [11]. The eight
electrodes selected for analysis are indicated by the dashed circles.

0.1 - 60 Hz and amplified with a SA Electronics amplifier

(20,000X), digitized at a rate of 240 Hz, and stored. All aspects

of data collection and experimental procedure were controlled

by the BCI2000 system [14].

D. Preprocessing and Classification

The channel selection and data preprocessing methods are

based on [11]. The eight-channel ear-referenced subset shown

in Figure 2 was used. For each channel in the subset, 800

ms segments of data following each flash were extracted. The

segments were then moving average filtered and decimated by

a factor of 12. The resulting data segments were concatenated

by channel for each flash, creating a single feature vector of

128 features (192/12 samples X 8 channels) for construction

of the covariance matrices. The CSTP weight matrices were

derived using each participant’s first session and tested on the

four subsequent sessions. Various combinations of the CSTP

projections representing the extreme eigenvalues for both the

targets and standards were classified using Fisher’s Linear

Discriminant (also trained on the first session).

IV. RESULTS

The classification results are provided in Table I. The

classification results using stepwise linear discriminant anal-

ysis (SWLDA) and Fisher’s Linear Discriminant (FLD) on

the raw feature vectors (without performing CSTP) are also

provided for comparison purposes [11]. It should be noted

that linear classification using all CSTPs should, theoretically,

be equivalent to FLD results since they both equate to a linear

transformation of the data in its entirety.

Due to the uniform temporal sampling, the actual spatio-

temporal patterns can be visualized by inverting the CSTP

filtering matrix W . A sample of the patterns representing the

extreme eigenvalues for each class is illustrated in Figure 3.

TABLE I

The average classification accuracy (% correct) for the 4 test sessions using

all 15 flash sequences. The leftmost column indicates the prominent CSTPs

(ordered by eigenvalue) for each class (standards (S) and targets (T)) used for

classification. The CSTP combination(s) that produced the highest accuracy

is bolded for each participant. FLD and SWLDA are included for comparison

purposes [11].

CSTP Participant
S T A B C D E F G

1 X 49.3 4.7 75.7 79.9 63.9 51.0 26.4
2 X 2.1 1.3 2.1 4.2 88.2 6.2 54.9
3 X 2.1 4.0 3.5 3.5 13.9 5.6 17.4
4 X 6.3 4.0 4.9 11.1 9.7 2.7 2.1
5 X 6.9 6.7 2.8 1.4 5.6 11.2 6.9

1:5 X 54.9 6.7 75.0 78.5 88.9 60.6 74.3
1:10 X 55.6 12.0 81.9 78.5 90.3 63.9 76.4
1:20 X 61.8 16.8 79.2 79.9 95.8 59.8 81.3

X 1 95.1 6.7 93.8 94.4 96.5 83.0 97.2
X 2 12.5 8.1 32.6 6.3 7.6 1.3 4.2
X 3 4.9 4.7 15.3 18.8 2.8 2.7 22.2
X 4 7.6 5.4 9.7 7.6 0.7 0.7 2.8
X 5 16.0 4.0 2.1 0.0 2.8 7.4 6.3
X 1:5 93.8 14.8 95.1 94.4 96.5 83.7 97.2
X 1:10 93.1 12.8 94.4 93.8 96.5 87.8 97.2
X 1:20 94.4 66.4 93.8 95.8 96.5 87.8 96.5
1 1 93.1 6.7 93.8 96.5 96.5 87.1 97.9

1:5 1:5 92.4 18.8 95.8 96.5 97.2 87.8 97.2
1:10 1:10 92.4 17.5 97.2 95.8 97.2 89.9 97.2
1:20 1:20 93.8 68.4 95.1 97.2 97.2 89.9 97.9

FLD 94.4 74.5 94.4 95.8 97.2 90.5 97.9
SWLDA 93.8 71.8 93.8 98.6 98.5 90.6 97.9

V. DISCUSSION

The classification results from Table I indicate that CSTP

is capable of producing a P300 subspace decomposition that

identifies the discriminable information of the responses. The

results suggest that this information is often contained in the

first few components (extreme eigenvalues) of the subspace

for each condition. A lack of obvious eigenvalue extrema is

indicative of response variability (as is evident for Participant

B). Often, the most prominent component associated with

the targets accounted for the majority of discriminable infor-

mation. However, the most prominent component associated

with the standards also contains significant information for

discrimination. In general, the other components from the

target and standard classes do not provide a significant indi-

vidual contributions. Nevertheless, when used in combination,

these components tend to improve classification slightly with

diminishing returns. Depending on the chosen CSTP subspace,

the classification results are comparable with results generated

by FLD and SWLDA classification on the raw data. However,

since more than one prominent CSTP component appears to

account for response variability, the CSTP subspace may best

be utilized with a more advanced nonlinear or ranking-based

classification scheme that accounts for this variability.

The spatio-temporal patterns representing the extreme

eigenvalues illustrated in Figure 3 are from a participant
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Fig. 3. Sample CSTP patterns from Participant G representing the most
extreme eigenvalue for the targets (solid) and standards (dashed).

exhibiting very stable P300 responses, having little variability.

Therefore, the patterns closely resemble the ensemble averages

of the responses as evidenced by the classical P300 waveforms

at Fz and Cz for the targets and the oscillatory waveforms

at the occipital locations for the standards (a result of the

unattended periodic flashing). However, this is not necessarily

always the case since the patterns account for information

from both conditions. The true utility of this visualization

is to identify and characterize additional patterns, other than

those represented by the single eigenvalue extreme for each

condition, that contribute favorably to classification.
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