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Abstract 
The purpose of this study was to identify electroencephalography (EEG) features that correlate 
with P300-based brain–computer interface (P300 BCI) performance in people with 
amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling 
application in copy-spelling mode. Three types of EEG features were found to be good 
predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative 
peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, 
and P4; and (3) EEG theta frequency (4.5–8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and 
Oz. A statistical prediction model that used a subset of these features accounted for >60% of 
the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations 
reflected between-subject, rather than within-subject, effects. The results enhance 
understanding of performance differences among P300 BCI users. The predictors found in this 
study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) 
assessing performance online. Further work on within-subject effects needs to be done to 
establish whether P300 BCI user performance could be improved by optimizing one or more 
of these EEG features. 

(Some figures may appear in colour only in the online journal) 

Introduction 

A brain–computer interface (BCI) allows users to 
communicate with or control the external world by thought 
alone. It provides a new output pathway for the brain that 
is different from the conventional neuromuscular pathways 

6 Formerly of Wadsworth Center. 

of peripheral nerves and muscles (Mak and Wolpaw 2009, 
Wolpaw et al 2002). Brain signals reflecting the intent of 
the user are detected, and then analyzed and translated into 
device commands that indicate the desire of the user. BCI 
technology holds promise to restore the communication and 
control ability of people who are suffering from the most severe 
motor disabilities (Daly and Wolpaw 2008, Mak and Wolpaw 
2009). Potential users include people with amyotrophic lateral 
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sclerosis (ALS), spinal-cord injury, stroke, and other serious 
neuromuscular diseases or injuries. These people may be 
locked into their bodies, i.e. cognitively intact but with minimal 
or no useful muscle function. 

Restoration of communication has been a main focus 
of BCI research to date (Birbaumer et al 1999, Krusienski 
and Wolpaw 2009, Kubler and Neumann 2005, Mak and 
Wolpaw 2009, Ramoser et al 1997). Several specific 
electroencephalography (EEG) features have been proposed 
as control signals for such BCI communication systems. The 
BCI user may learn to modulate EEG features in the time 
domain (Birbaumer et al 1999, 2000), or in the frequency 
domain (McFarland et al 2008, Wolpaw and McFarland 2004) 
to represent his or her intent. Alternately, the BCI system may 
use event-related potentials (ERPs) elicited by external stimuli 
to determine the user’s intent (Donchin et al 2000, Gao  et al 
2003, Krusienski et al 2008, Wang et al 2006). See Mak and 
Wolpaw (2009) for a more detailed review of BCIs. 

The P300-based BCI (P300 BCI) system detects the P300 
ERP to infrequent target stimuli, and thereby allows users to 
select items from a matrix consisting of letters, numbers, and 
function calls (Donchin et al 2000, Farwell and Donchin 1988). 
Previous studies have attempted to improve P300 BCI system 
performance in terms of speed and accuracy by optimizing the 
visual presentation paradigm (Salvaris and Sepulveda 2009, 
Sellers et al 2006, Townsend et al 2010), the feature extraction 
method (Rivet et al 2009, Serby et al 2005, Xu  et al 2004), 
and/or the classification algorithm (Krusienski et al 2006, 
Lenhardt et al 2008, Rakotomamonjy and Guigue 2008). 

Despite recent progress in optimizing P300 BCI system 
performance, studies in both healthy (Guger et al 2009) and 
severely disabled subjects (Nijboer et al 2008, Sellers and 
Donchin 2006) report highly variable online performance 
across users. Indeed, some people, including those in target 
populations (Vaughan et al 2006), have been unable to use a 
P300 BCI due to low online classification accuracies (McCane 
et al 2009). Similar phenomenon has also been observed 
and reported in motor-imagery-based BCIs (Vidaurre and 
Blankertz 2010). Often, the reasons for poor BCI performance 
are not clear. Specifically, there is limited knowledge about 
which EEG features determine, or reflect, successful use of 
an EEG-based P300 BCI. Because successful BCI operation 
depends on the interaction between the user and the BCI 
system (Wolpaw et al 2002), specific features of the EEG 
are likely to correlate with performance. The purpose of this 
study was to identify the EEG features that best correlate with 
P300 BCI performance. 

Methods 

Subjects 

Twenty subjects (16 men, 4 women; mean age 56.9 ± 
8.6 years) with advanced ALS were included in this study. 
Most were extremely disabled (mean ALSFRS scores: 
6.89 ± 6.89 (Brooks et al 1996)). Fourteen out of 
20 subjects used mechanical ventilation and retained little or 
no voluntary muscle control (i.e. no more than eye movement 

Figure 1. The 6 × 6 P300 BCI matrix used in this study. Groups of 
items in the speller matrix flashed successively in a random manner 
beginning 0.5 s after the presentation of the target selection listed in 
parentheses at the end of the character string (i.e. ‘J’ in this case). In 
online testing runs, the classification results were displayed 
immediately in the text-result bar. 

or movement of a single digit). At the time of the study, 
10 subjects communicated using high-technology assistive 
devices operated via small body movements (e.g. eye, neck or 
head). The remaining 10 communicated using low-technology, 
e.g., visual letter boards. A detailed inclusion criterion for 
initial user of our BCI system can be found in Vaughan et al 
(2006). The study was reviewed and approved by the Helen 
Hayes Hospital Institutional Review Board, and all subjects 
provided informed consent. 

Data acquisition 

EEG was recorded using a cap (Electro-Cap International, 
Inc.) embedded with 16 electrodes (F3, Fz, F4, T7, C3, Cz, 
C4, T8, CP3, CP4, P3, Pz, P4, PO7, Oz, PO8) based on 
the modified international 10-20 system (Sharbrough et al 
1991). The recordings were referenced to the right mastoid and 
grounded to the left mastoid. The EEG was bandpass filtered at 
0.5–30 Hz, amplified with a g.USBamp (Guger Technologies 
OEG, Graz, Austria), digitized at a rate of 256 Hz, and stored. 
Electrode impedances were kept below 10 kQ. BCI operation 
and data collection were controlled by BCI2000, a general-
purpose BCI software platform (Schalk et al 2004). 

Experimental protocol 

Subjects were seated in their home environment facing a 
computer screen. As showed in figure 1, the visual presentation 
was divided into three parts: (1) the Text-to-Spell Bar, (2) the 
Text-Result Bar, and (3) the 6 × 6 Speller matrix containing 
36 items (letters and numbers). All data were collected in 
copy-spelling mode (Krusienski et al 2008, Sellers et al 2006). 
The word(s) the user was asked to copy-spell were displayed 
in the Text-to-Spell bar, with the current target letter shown 
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Table 1. EEG features extracted from each EEG channel used for online classification. 

Continuous EEG RMS amplitude (RMS) 
RMS amplitude at 60 Hz (RMS60) 
Delta frequency band power (Delta) 
Theta frequency band power (Theta)
 
Beta1 frequency band power (Beta1)
 
Beta2 frequency band power (Beta2)
 

Alpha1 frequency band power (Alpha1)
 
Alpha2 frequency band power (Alpha2)
 
Gamma frequency band power (Gamma)
 

ERP Target responses Non-target responses 
Positive peak amplitude (TPeak) Positive peak amplitude (NTPeak)
 

Positive peak latency (TpLat) Positive peak latency (NTpLat)
 
Negative peak amplitude (TnPeak) Negative peak amplitude (NTnPeak)
 

Negative peak latency (TnLat) Negative peak latency (NTnLat)
 
Peak-to-peak amplitude (TPtP) Peak-to-peak amplitude (NTPtP)
 

RMS amplitude (TRMS) RMS amplitude (NTRMS)
 

Features of continuous EEG: 
RMS amplitude (μV), RMS amplitude at 60 Hz (μV), power at various frequency bands
 
(dB)—Delta: 0.5–4 Hz; Theta: 4.5–8 Hz; Alpha1: 8.5–11 Hz; Alpha2: 11.5–14 Hz; Beta1:
 
14.5–25 Hz; Beta2: 25.5–35 Hz; Gamma: >35.5 Hz.
 
Features of ERP to target and non-target stimuli (analysis window: 800 ms post-stimulus):
 
positive peak amplitude (μV), positive peak latency (ms), negative peak amplitude (μV),
 
negative peak latency (ms), peak-to-peak amplitude (μV), and RMS amplitude (μV).
 

in parentheses at the end of the character string. Beginning 
0.5 s after the presentation of the target selection in 
parentheses, groups of items in the speller matrix flashed 
successively in a random order (Townsend et al 2010). The 
flash rate was 4 Hz (flash for 187.5 ms with 62.5 ms between 
flashes). Subjects were asked to attend to the target letter and 
to silently count the number of times it flashed. An average of 
17.5 ± 4.89 flashes per selection were presented to subjects 
in this study. 

Each subject performed one copy-spelling session 
comprised of nine 3–4 min runs. In each run, the user was 
asked to copyspell a word or a character set. The words and 
character sets were the same across subjects. The first five 
runs (21 characters in total) comprised a calibration phase 
in which no feedback was provided, and the next four runs 
(14 characters in total) comprised a testing phase in which 
feedback was provided (i.e. the letters spelled up to the current 
moment were displayed in the Text-Result Bar). It should be 
noted that, in cases where classification rate is low (<75%), 
feedback in testing phase was disabled to avoid frustration of 
subjects. 

Online classification 

A stepwise linear discriminant analysis (SWLDA) was applied 
to the data from the five calibration runs (i.e. training set; 
runs 1–5) to determine the classifier weights (i.e. classifier 
coefficients) (Donchin et al 2000, Farwell and Donchin 1988, 
Krusienski et al 2006). These weights were then applied during 
the subsequent four testing runs (i.e. testing set; runs 6–9). 
Individuals who achieved success (classification 75%) on run 6 
(i.e. first testing run) were provided feedback for the remaining 
three runs. The time epoch used for analysis was 800 ms with 
a decimation frequency of 20 Hz (i.e. resulting in 16 samples 
in 800 ms). The SWLDA procedure derived classifier weights 
from a subset of eight channels (Fz, Cz, P3, Pz, P4, PO7, PO8, 

Oz). Previous exploratory work by Krusienski et al (2008) 
has shown reliable and satisfactory classification results with 
a P300 BCI using this eight-channel set. This electrode set 
requires less preparation time than the traditional 10–20 set 
while keeping classification optimal, and is therefore used as a 
standard for long-term home use of a P300-based BCI system 
(Sellers et al 2010, Vaughan et al 2006). However, it is possible 
that a different montage would be required for ALS patients 
in different stages of their disease. Therefore, an additional 
eight channels of EEG data was collected from each subject 
for further individualized offline analyses as it may require. 

Data processing and analysis 

In order to study the correlation between the subject’s EEG 
activity and his/her P300 BCI performance, we analyzed EEG 
data collected from the four testing runs (runs 6–9) of each 
of the 20 subjects. EEG or ERP activity is characterized by 
frequency, amplitude, and the direction of major deflection, 
i.e. polarity (Tong and Thankor 2009). In this study, a total 
of 21 EEG features (table 1) were extracted from each of 
the eight EEG channels (Fz, Cz, P3, Pz, P4, PO7, PO8, 
Oz) used for online classification. These features formed a 
feature space of dimension 168 × 80 ((21 features × 8 
channels) × (20 subjects × 4 runs)). The EEG features used, 
which include peak measurements, frequency band power, and 
average amplitude over time, are listed in table 1. They are  
classical, quantitative EEG/ERP measures that are commonly 
used in the field (Cacioppo et al 2007, Luck 2005, Tong and 
Thankor 2009, van Drongelen 2007). 

EEG features in the feature space were divided into four 
groups, with a dimension of 168 × 20 each, corresponding 
to their run numbers (i.e. run 6, 7, 8, 9). Stepwise multivariate 
linear regression analysis (Draper and Smith 1981) with a 
leave-one-out replication was applied to determine which 
of the extracted EEG features correlated best with P300 

3 



J. Neural Eng. 9 (2012) 026014 J N Mak  et al 

Figure 2. P300 BCI online performance of 20 ALS subjects (four testing runs per subject: runs 1–4). 48.75% of runs achieved 100% online 
accuracy; 30% of runs had online accuracy of 0%. 

BCI performance. The stepwise algorithm adds and removes 
features in steps until the optimum model is reached. Only 
features significantly improving (p < 0.05) the model’s 
ability to predict P300 BCI performance were retained in the 
model. Four prediction models of P300 BCI performance (i.e. 
accuracy) were developed from the four different possible 
combinations of three of the four feature groups (i.e. the 
training sets). Cross-validation was performed to deal with 
the possible problem caused by multiple test procedures during 
model selection (Simon 1994, Tukey  1977). The generalization 
of each model was tested by applying it to the group that 
had not been included in the combination used to develop 
the model (i.e. the validation set). The predicted accuracy for 
the validation set was calculated and then compared to its 
actual online accuracy. The model yielding the most reliable 
prediction of P300 BCI performance was selected. To verify 
the robustness of the selected prediction model, we repeated 
the above model training and validation procedures with 
regular linear regression analyses, using only EEG features 
retained in the selected model. 

The data displayed both within- and between-subject 
variances (i.e. a mixed-effect model). The statistical procedure 
of within-subject centering (van de Pol and Wright 2009) 
was performed to separate the two sources of variance. The 
relationship between the selected EEG features and P300 BCI 
performance was then examined with bivariate models (i.e. 
Pearson’s r) in both fixed-effect (within- and between-subject 
effects) and mixed-effect models. These analyses also assessed 
the topographic specificity of the selected features. 

All offline EEG analysis was performed by software 
developed in the MATLAB (The Mathworks, Natick, MA) 
environment. All statistical procedures were performed using 

the Statistical Package for the Social Sciences, Version 10 
(Chicago, IL). 

Results 

The performance of P300 BCI operation was assessed in terms 
of the online accuracies of individual testing runs. Online 
accuracy was defined as the per cent of accurate classification 
(i.e. per cent of letters correctly selected) in a single run. 
Figure 2 shows the online performance (per cent correct) of all 
20 subjects (80 runs in total). About half of the runs (48.75%) 
achieved 100% accuracy, while 30% of the runs resulted in 
0% accuracy. Chance accuracy was 2.8%. Table 2 shows the 
average peak-to-peak amplitude of target ERP at Cz of all 20 
subjects, during online testing phase. 

As described in methods, four prediction models of 
P300 BCI performance were developed from different 
combinations of training groups, using stepwise multivariate 
linear regression analyses. With a leave-one-out approach, 
each model was tested by its validation set, the group left 
out during model training. Significant correlations (p < 0.05) 
between the predicted and actual online accuracies for the 
validation set were found in all four models. As table 3 shows, 
model 1 produced the most reliable prediction (R2 = 0.55, 
p < 0.001) among all the prediction models. It was also the 
simplest model with the fewest degrees of freedom. 

To verify the robustness of the selected prediction model 
(i.e. model 1 in table 3), regular linear regression analyses 
using the five selected EEG features (TRMS at Fz, Cz, 
and P3; TnPeak at Pz; and Theta at PO7) from model 1 
were performed with a leave-one-out replication using each 
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Table 2. Average peak-to-peak amplitude of target ERP at Cz during 
testing phase (n = 20 subjects; testing runs = 4; characters = 14). 

Average peak-to-peak amplitude 

Subject 1 5.53 (1.34) 
Subject 2 16.76 (2.69) 
Subject 3 10.74 (1.93) 
Subject 4 5.38 (1.50) 
Subject 5 6.55 (0.35) 
Subject 6 4.48 (0.90) 
Subject 7 6.76 (1.37) 
Subject 8 8.03 (0.74) 
Subject 9 5.98 (1.63) 
Subject 10 11.74 (0.97) 
Subject 11 6.51 (0.88) 
Subject 12 2.73 (0.49) 
Subject 13 10.14 (0.93) 
Subject 14 16.64 (2.45) 
Subject 15 8.21 (0.55) 
Subject 16 3.45 (0.24) 
Subject 17 5.10 (1.43) 
Subject 18 6.84 (0.60) 
Subject 19 7.70 (1.26) 
Subject 20 4.83 (0.39) 

Standard deviations are included in
 
parentheses.
 

of the four training sets (table 4). Significant correlations 
(p < 0.001) between the predicted and actual accuracies were 
found for all four training sets. As comparison of the results in 
tables 3 and 4 indicates, prediction models developed with the 
five selected EEG features yielded higher performance levels. 
This confirmed the robustness of the selected prediction model. 
In sum, for people with ALS, P300 BCI performance can be 
predicted by the following equation: 

Accuracy = βTRMS(Fz) · TRMS(Fz) + βTRMS(Cz) 

· TRMS(Cz) + βTRMS(P3) · TRMS(P3) + βTnPeak(Pz) 

· TnPeak(Pz) + βTheta(PO7) · Theta(PO7) + b, 

where β is the weight of the corresponding EEG feature and 
b is a constant. 

Figure 3 illustrates individual relationships of the selected 
EEG features with P300 BCI performance; TRMS at Fz, Cz 
and P3 are positively correlated with performance, while both 
Theta at PO7 and TnPeak at Pz are negatively correlated with 
performance. 

The topographic specificity of TRMS, TnPeak, and Theta 
in predicting P300 BCI performance was evaluated (table 5). 
Significant correlations were found for: TRMS at Fz, Cz, P3, 
Pz, and P4 (p < 0.01); TnPeak at Fz, Cz, P3, Pz, and P4 (p < 

0.05); and Theta at all electrode locations (Fz, Cz, P3, Pz, P4, 
PO7, Oz, PO8) (p < 0.001). 

The strongest correlation between P300 BCI performance 
and EEG Theta frequency power was found at PO7 
(R = −0.446, p < 0.001). One possibility is that the parietal-
occipital Theta represents user visual evoked responses to the 
4 Hz visual stimulus (i.e. a group of items flashes every 
250 ms). To evaluate this possibility, the power spectrum 
distributions between 4 and 8 Hz at PO7 in low accuracy 
runs (accuracy = 0–33%; n = 36) and high accuracy runs 
(accuracy = 100%; n = 39) were examined separately. The 

interval of frequency bins in the power spectrum was 1 Hz. 
As figure 4 illustrates, the distribution of power between 4 and 
8 Hz was flat in high accuracy runs. In low accuracy runs, 
a significantly higher (p < 0.001) spectral power was found 
for all single frequency bins when compared to that in high 
accuracy runs. Moreover, spectral power at 4 Hz was less than 
that at 5, 6, 7, or 8 Hz. Thus, it appears that the 4 Hz visual 
stimulus did not account for the theta power effects at PO7. 

After within-subject centering, the within- and between-
subject effects of each of the three strong predictors (TRMS, 
TnPeak and Theta) were examined separately. As shown 
in figures 5(a)–(c), the significant correlations of the three 
predictors with P300 BCI performance found in the mixed-
effect model reflected mainly a between-subject effect (p < 

0.05). No significant within-subject correlations were found 
for these three predictors. 

Discussion 

This study identified three predictors of P300 BCI performance 
in people severely disabled by ALS. They are: (1) root-mean
square amplitude (TRMS); (2) negative peak (TnPeak) of the 
target ERP at Fz, Cz, P3, Pz, and P4; and (3) Theta frequency 
power (Theta) at Fz, Cz, P3, Pz, P4, PO7, Oz, and PO8. Each 
of these EEG features was significantly correlated with the 
online accuracy of P300 BCI. A statistical prediction model 
that used a subset of these features accounted for >60% of the 
variance in P300 BCI online performance (p < 0.001, mean 
R2 = 0.6175). 

As independent features, TRMS at Fz (R = 0.331, p < 

0.01), Cz (R = 0.483, p < 0.001) and P3 (R = 0.241, p < 

0.01) were positively correlated with P300 BCI performance 
(figure 3). Thus we can expect that performance (i.e. 
classification accuracy) will increase as TRMS at these three 
electrode locations increases. However, we found negative 
beta weights for TRMS at Fz and P3 in the regression 
equations of the prediction models (table 4). This difference 
between the signs of bivariate correlation coefficients and 
multivariate regression weights suggested that TRMS at Fz 
and P3 were operating as suppressor variables in the statistical 
prediction model (Cohen et al 2003). We speculated that the 
primary effect of TRMS at Fz and P3 was suppression of 
the error variance of TRMS at Cz (i.e. by reducing spatial 
noise). In general, TRMS at Fz, Cz, P3, Pz, and P4 were 
each significantly correlated (p < 0.05) with P300 BCI 
performance. 

As separate ERP amplitude measures, TnPeak at Fz, 
Cz, P3, Pz, and P4 were significantly correlated (p < 0.05) 
with P300 BCI performance (table 5). These features shared 
electrode locations with the TRMS features that also correlated 
with P300 BCI performance. Previous studies have reported 
the importance of a negative peak at parietal electrodes 
(Hoffmann et al 2008), particularly Pz (Dal Seno et al 2008), 
in P300-based BCI classification accuracy. In agreement with 
these previous findings, in this study, TnPeak at Pz was 
selected by the stepwise algorithm as one of the features in 
the prediction model of P300 BCI performance. 

Table 5 shows that theta frequency power (Theta) at 
all electrode locations used for online classification (Fz, Cz, 
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(a) (b) 

Figure 3. Relationships between selected EEG features and P300 BCI online performance (% accuracy). (a) RMS amplitude of target ERP 
at Fz. (b) RMS amplitude of target ERP at Cz. (c) RMS amplitude of target ERP at P3. (d) EEG theta frequency power at PO7. (e) Negative 
peak amplitude of target ERP at Pz. 

Table 3. Stepwise multivariate linear regression analyses: statistical prediction models for P300 BCI performance and validation results. 

Prediction models (stepwise multivariate linear regression) 

Model 1 Model 2 Model 3 Model 4 

Training set Groups 2, 3, and 4 (n = 60) Groups 1, 3, and 4 (n = 60) Groups 1, 2, and 4 (n = 
Regression Constant 43.49 Constant 29.18 Constant 25.17 
equation: TRMS(Fz) −21.24 TRMS(Cz) +94.75 TRMS(Fz) −27.98 
predictors, TRMS(Cz) +76.83 TRMS(P3) −62.58 TRMS(Cz) +83.71 
corresponding TRMS(P3) −81.71 TnPeak(Fz) +14.07 TRMS(P3) −91.36 
beta weights (β) Theta(PO7) −2.08 TnPeak(Pz) −14.04 TnPeak(P3) −18.11 
and constant (b) TnPeak(Pz) −14.35 TnLat(Fz) +0.04 TnLat(P4) +0.05 

TPeak(Pz) −13.62 Theta(PO7) −2.04 
NTpLat(PO7) +0.04 
TpLat(P3) −0.05 
Theta(PO7) −1.82 

60) Groups 1, 2, and 3 (n = 
Constant −8.39 
TRMS(Fz) −21.03 
TRMS(Cz) +64.58 
TRMS(P3) −30.70 
NTpLat(Fz) +0.06 
NTpLat(P3) +0.05 
Theta(PO7) −1.69 

60) 

Validation 
Validation set Group 1 (n = 20) Group 2 (n = 20) Group 3 (n = 20) 
Significance p < 0.001 p < 0.05 p < 0.05 
Correlation R2 = 0.55 R2 = 0.36 R2 = 0.41 

Group 4 (n = 20) 
p < 0.05 
R2 = 0.39 

EEG features selected by the stepwise algorithm in each model.
 
Model 1—root-mean-square amplitude of target ERP (TRMS) at Fz, Cz, and P3, negative peak amplitude of target ERP (TnPeak) at
 
Pz, and EEG theta frequency power (Theta) at PO7.
 
Model 2—TRMS at Cz, and P3, TnPeak at Fz and Pz, negative peak latency of target ERP (TnLat) at Fz, positive peak amplitude of
 
target ERP (TPeak) at Pz, positive peak latency of non-target ERP (NTpLat) at PO7, positive peak latency of target ERP (TpLat) at P3,
 
and Theta at PO7.
 
Model 3—TRMS at Fz, Cz, and P3, TnPeak at P3, TnLat at P4, and Theta at PO7.
 
Model 4—TRMS at Fz,  Cz, and  P3, NTpLat at Fz and  P3, and  Theta at PO7. 
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Figure 4. Average spectral power distribution (4–8 Hz) at PO7 in low and high accuracy runs. Low accuracy runs (n = 36; accuracy = 
0–33%); high accuracy runs (n = 39; accuracy = 100%). Significantly higher spectral powers at 4–8 Hz (p < 0.001) were noticed in low 
accuracy runs. ∗Statistical significance at p < 0.001. 

Table 4. Regular linear regression analyses: statistical prediction models for P300 BCI performance and validation results. 

Prediction models (regular linear regression) 

Training 
set 

Groups 2, 3, 
and (n = 60) 

Groups 1, 3, 
and (n = 60) 

Groups 1, 2, 
and (n = 60) 

Groups 1, 2, 
and (n = 60) 

Constant 43.49 Constant 45.05 Constant 41.90 Constant 42.41 
Regression 
equation: 
predictors, 
corresponding 
beta weights 
constant (b) 

TRMS(Fz) 
TRMS(Cz) 
TRMS(P3) 
Theta(PO7) 
TnPeak(Pz) 

−21.24 
+76.83 
−81.71 
−2.08 

−14.35 

TRMS(Fz) −24.21 
TRMS(Cz) +86.48 
TRMS(P3) −84.50 
Theta(PO7) −1.71 
TnPeak(Pz) −11.91 

Validation 

TRMS(Fz) 
TRMS(Cz) 
TRMS(P3) 
Theta(PO7) 
TnPeak(Pz) 

−24.22 
+76.56 
−72.47 
−1.91 

−13.16 

TRMS(Fz) 
TRMS(Cz) 
TRMS(P3) 
Theta(PO7) 
TnPeak(Pz) 

−19.80 
+69.65 
−59.47 
−1.94 
−8.24 

Validation set 
Significance 
Correlation 

Group 1 (n = 20) 
p <0.001 
R2 = 0.55 

Group 2 (n = 20) 
p <0.001 
R2 = 0.60 

Group 3 (n = 20) 
p <0.001 
R2 = 0.57 

Group 4 (n = 20) 
p <0.001 
R2 = 0.75 

Prediction models were developed by regular linear regression analyzes, using only the five EEG features from the best
 
model found in prior statistical analyses (i.e. model 1 in table 2):
 
root-mean-square amplitude of target ERP (TRMS) at Fz, Cz, and P3, negative peak amplitude of target ERP
 
(TnPEAK) at Pz, and Theta frequency power (Theta) at PO7.
 

P3, Pz, P4, PO7, PO8, Oz) is significantly correlated (p < 

0.001) with P300 BCI performance. Theta power has been 
extensively studied. Theta oscillations are associated with 
various functions: task difficulty or complexity (Gevins et al 
1997), error processing (Luu et al 2004); attention and/or 
arousal (Aftanas and Golocheikine 2001, Inanaga 1998); 
decision making (Jacobs et al 2006); memory recognition 
(Jacobs et al 2006); and memory load (Jacobs et al 2006, 

Jensen and Tesche 2002). In the present study we found 
that Theta increase was associated with decreased P300 BCI 
accuracy. This finding agrees with previous work showing a 
negative relationship between theta power and performance in 
cognitive and memory tasks (Hermens et al 2005, Klimesch  
1999). Earlier studies have also reported increased theta power 
with drowsiness (Bittner et al 2000, Boksem et al 2005, 
De Gennaro et al 2007, Klimesch 1999). The higher Theta 
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(a) 

(b) 

(c) 

Figure 5. (a) Relationship between RMS amplitude of target ERP (TRMS) and P300 BCI performance: mixed-effect, within- and 
between-subject effects. (b) Relationship between negative peak amplitude of target ERP (TnPeak) and P300 BCI performance: 
mixed-effect, within- and between-subject effects. (c) Relationship between Theta power (Theta) and P300 BCI performance: mixed-effect, 
within- and between-subject effects. ∗Statistical significance at p < 0.05. 
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Table 5. Topographic specificity of (1) target ERP RMS amplitude 
(TMRS); (2) target ERP negative peak amplitude (TnPeak); and (3) 
EEG theta frequency power (Theta), in predicting P300 BCI 
performance. 

EEG features Location Pearson’s r p 

TRMS Fz 0.331 <0.01 
∗ 

Cz 0.483 <0.001 
∗ 

P3 0.241 <0.05 
∗ 

Pz 0.375 0.001 
∗ 

P4 0.334 <0.01 
∗ 

PO7 0.09 >0.05 
PO8 0.188 >0.05 
Oz 0.148 >0.05 

TnPeak Fz −0.329 <0.01 
∗ 

Cz −0.438 <0.001 
∗ 

P3 −0.271 <0.05 
∗ 

Pz −0.372 0.001 
∗ 

P4 −0.358 0.001 
∗ 

PO7 −0.119 >0.05 
PO8 −0.218 >0.05 
Oz −0.188 >0.05 

Theta Fz −0.401 <0.001 
∗ 

Cz −0.391 <0.001 
∗ 

P3 −0.412 <0.001 
∗ 

Pz −0.398 <0.001 
∗ 

P4 −0.407 <0.001 
∗ 

PO7 −0.446 <0.001 
∗ 

PO8 −0.410 <0.001 
∗ 

Oz −0.400 <0.001 
∗ 

Significant correlation with online accuracy of 
P300 BCI were found in: 
(1) TRMS at Fz, Cz, P3, Pz, P4; 
(2) TnPeak at Fz, Cz, P3, Pz, P4; 
(3) Theta at Fz, Cz, P3, Pz, P4, PO7, PO8, Oz.
∗ 
Statistical significance at p <0.05. 

associated with poorer BCI performance in people with ALS 
could reflect decreased alertness during BCI operation. Further 
work is needed to clarify this relationship and its underlying 
mechanism. 

This is to our knowledge the first study to identify EEG 
features that correlate with P300 BCI online performance. 
At the same time, the study has certain limitations. First, all 
possible EEG features were not evaluated. While EEG features 
that correlate with performance were certainly identified, it 
remains possible that other EEG features also correlate, or 
even account for additional variance. Second, while the study 
could readily detect between-subject effects, the relatively 
limited amount of data from each subject (i.e. one session) 
constrained its ability to detect within-subject effects. Studies 
that incorporate multiple sessions per subject are needed to 
identify EEG features that correlate with performance within 
individuals. Third, since all of the subjects had ALS, it is 
not clear to what extent the results will generalize to other 
populations. 

By identifying EEG features that correlate with P300 BCI 
performance in people with ALS, this study may contribute 
in several ways to current efforts to provide P300-based 
BCIs to people with severe disabilities. This new knowledge 
could assist in identifying suitable candidates for long-term 
home use of P300 BCI systems. It could help recognize 

individuals for whom the system is likely to be effective 
as well as those for whom it is likely to be ineffective, 
and could thereby facilitate initial evaluations and reduce 
the risk of user frustration and disappointment. Furthermore, 
future investigation and experimentation into the within-
subject effects of these identified EEG features is strongly 
recommended. P300 BCI performance might possibly be 
improved by optimizing one or more of these features (e.g. 
decreasing Theta power) through new stimulus presentation 
paradigms or new user training methods. Such improvements 
might substantially increase the capacity and reliability of 
P300 BCI systems for long-term home use by people with 
severe disabilities (Vaughan et al 2006). 
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