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A brain-computer interface (BCI) enables communication without movement based on
brain signals measured with electroencephalography (EEG). BCIs usually rely on one of
three types of signals: the P300 and other components of the event-related potential
(ERP), steady state visual evoked potential (SSVEP), or event related desynchronization
(ERD). Although P300 BCIs were introduced over twenty years ago, the past few years
have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies
on the P300 and other components of the ERP, based on an oddball paradigm presented
to the subject. In this paper, we overview the current status of P300 BCI technology, and
then discuss new directions: paradigms for eliciting P300s; signal processing methods;
applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several
emerging directions have not yet been fully explored and could lead to improvements in
bit rate, reliability, usability, and flexibility.
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INTRODUCTION
Brain-computer interface (BCI) systems allow users to communi-
cate without movement and provide a direct electronic interface
to convey messages and commands from the brain to a computer
(Wolpaw et al., 2002). A BCI system monitors conscious elec-
trical brain activity via electroencephalogram (EEG) signals and
detects patterns that are generated by the user. After the EEG is
digitized, it is processed via digital signal processing algorithms
to convert the EEG into a real-time control signal (Mason et al.,
2007). By establishing a communication link between a subject
and a computer, BCI can enable physically disabled people to
perform many activities, which improve their quality of life and
productivity, allowing them more independence (Wolpaw et al.,
2002).

BCIs are named according to the type of brain activity used
for control. Among several categories of EEG-based BCIs, includ-
ing P300 (Farwell and Donchin, 1988), steady state visual evoked
potential (SSVEP) (Herrmann, 2001), event related desynchro-
nization (ERD) (Pfurtscheller and Neuper, 2001), and slow corti-
cal potential based (Birbaumer et al., 2000), in this paper, only
the P300-based BCI is reviewed. This type of BCI has recently
been the focus of many studies, is relatively easy to use for a

control signal, and has shown great potential to be used in several
different applications.

The P300 is a component of the event-related potential (ERP)
first reported by Sutton (Sutton et al., 1967). An ERP is an elec-
trophysiological response to an internal or external stimulus. It is
a fluctuation in the EEG that is elicited by and is time-locked to
a sensory, motor, or cognitive event. The P300 is the largest ERP
component and can be generated during an oddball paradigm.
In an oddball paradigm, subject is presented with a sequence of
events that can be categorized into two classes such that one of
them is rarely presented (Donchin and Coles, 1988). The infre-
quent event generates the P300 peak about 300 ms after stimulus
onset. P300 is involved with the process of memory modifica-
tion or learning and things appear to be learned if, and only
if, they are surprising (Donchin, 1981). In this paper, we dis-
cuss the progress in the P300 based BCIs, current challenges, and
emerging trends.

The paper is organized as follows. The next section dis-
cusses the current status of P300 BCIs. In section “Visual P300
Paradigms,” several paradigms for eliciting the visual P300 are
presented. Section “P300 Detection” discusses several P300 detec-
tion challenges and associated performance limitations of the
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P300 BCI. Several different applications of the P300 BCI that are
being investigated and developed are discussed in section “Other
P300-BCI Applications.” Finally, we end with concluding remarks
in section “Validation.”

CURRENT STATUS OF P300 BCIs
Although the P300 BCI was introduced in 1988 (Farwell and
Donchin, 1988), it initially received very little attention. From
1988 to 2000, there were no P300 BCI peer-reviewed papers
(Donchin et al., 2000). The next five years saw only a modest
increase in P300 BCI articles, which often relied on offline anal-
yses, such as analyzing other groups’ data from the 2003 BCI
Data Analysis Competition (Allison and Pineda, 2003; Xu et al.,
2004).

However, in the past few years, P300 BCIs have clearly emerged
as one of the main BCI categories. P300 BCIs have consis-
tently exhibited several appealing features—they are relatively
fast, effective for most users, straightforward, and require prac-
tically no training. Recent work has shown that P300 BCIs can
be used for a wide range of different functions and can work
with disabled users in home settings (Kübler et al., 2009; Sellers
et al., 2010; Kleih et al., 2012), although some concerns about
gaze shifting have emerged (Allison et al., 2008; Brunner et al.,
2010; Treder and Blankertz, 2010). In addition, new paradigms for
eliciting the P300 have been introduced (Fazel-Rezai and Abhari,
2009; Townsend et al., 2010), and new ways to flash or otherwise
change stimuli could enhance ERPs and improve classification
(Kaufmann et al., 2011; Jin et al., 2012). Overall, it is likely that
P300 BCIs will remain prominent in the foreseeable future, but
will probably grow further and further away from the canonical
6 × 6 matrix with single row and column flashes described in the
first two P300 BCI articles.

P300 PAPERS SUBMITTED IN JOURNALS SINCE 2000
The past few years have seen a strong increase in P300 BCI
research. Figure 1 shows the number of peer-reviewed journal
publications that were identified via PubMed and Scopus search
engines from 2000 to 2010 with the phrase “[(P300 OR P3) AND
(BCI OR Brain Computer Interface)].” Conference proceedings
were removed from the search. These articles reflect numerous

novel directions. In addition to improving information transfer
rate, there has been considerable success extending P300 BCIs to
new tasks, paradigms, and applications.

2010 BCI AWARD SUBMISSION STATISTICS
To highlight trends and developments of BCI technology, g.tec
(Medical Engineering GMBH, Austria) began to sponsor the
Annual BCI Award in 2010. Fifty-seven projects were submitted to
the BCI Award 2010 and an international committee nominated
the 10 top-ranked candidates (Guger, 2011).

Table 1 categorizes the BCI Award 2010 nominees into uti-
lized control signals and application areas. Of the eight nominated
projects that used EEG as input signal, six utilized the N200/P300
response. N200 is a negative peak in the ERP that appears about
200 ms after a stimulus onset (Hong et al., 2009). The com-
mittees decision to select a number of P300 BCI paradigms is
reflected by several reasons: (1) the P300 response is easy to mea-
sure and non-invasive, (2) it requires less than 10 min of training,
(3) it works with the majority of subjects including those with
the severe neurological disease, and (4) gives a goal-oriented
control signal that is especially suited for spelling and control
application where no continuous control signal is needed (e.g.,
Internet surfing, painting). All the spelling/Internet/art applica-
tions selected by the BCI Award committee were controlled with
the P3 N200/P300 strategy. The two other projects used motor
imagery (MI) to generate a continuous control signal. Both MI
projects used the BCI system for the activation of the senso-
rimotor cortex for stroke rehabilitation, which is not possible
with N200/P300- or SSVEP-based BCI systems. In the 2010 com-
petition, 40.4% of 57 submissions used MI, 29.8% used P300
and 8.9% used the SSVEP principles, and the rest used other
modalities.

VISUAL P300 PARADIGMS
One of the most important facets of a P300 BCI involves
eliciting large differences between target and non-target ERPs.
Typically, a visual paradigm is displayed on a computer
screen for stimulation. For a long time, the row/column (RC)
paradigm originally introduced by Farwell and Donchin in 1988
(Farwell and Donchin, 1988) was the most common paradigm

FIGURE 1 | Number of published journal papers in PubMed and Scopus from 2000 to 2010 when “[(P300 OR P3) AND (BCI OR Brain Computer

Interface)]” keyword was used.
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Table 1 | Categorization of the 10 BCI Award nominees.

Title Authors

Affiliations

Control signal Application

A high speed word spelling BCI system
based on code modulated visual evoked
potentials

Guangyu Bin, Xiaorong Gao, Shangkai Gao
Department of Electrical Engineering, Tsinghua
University, Beijing, China

N200
P300

Spelling
Internet
Art

Motor imagery-based Brain-Computer
Interface robotic rehabilitation for stroke

Cuntai Guan, Kai Keng Ang, Kok Soon Phua,
Chuanchu Wang, Zheng Yang Chin, Haihong
Zhang, Rongsheng Lin, Karen Sui Geok Chua,
Christopher Kuah, Beng Ti Ang
Institute for Infocomm Research, Agency for
Science, Technology and Research, Singapore

MI Stroke

An active auditory BCI for intention
expression in locked-in

Jing Guo, Shangkai Gao, Bo Hong
Department of Electrical Engineering, Tsinghua
University, Beijing, China

N200
P300

Spelling
Internet
Art

Brain-actuated Google search by using
motion onset VEP

Tao Liu, Shangkai Gao, Bo Hong
Department of Electrical Engineering, Tsinghua
University, Beijing, China

N200
P300

Spelling
Internet
Art

Brain Painting—“Paint your way out” Harry George, Sebastian Halder, Adi Hösle, Jana
Münßinger, Andrea Kübler
Department of Psychology I, University of
Würzburg, Würzburg, Germany

N200
P300

Spelling
Internet
Art

Thought Recognition with Semantic
Output Codes

Mark Palatucci, Dean Pomerleau, Geoff Hinton,
Tom Mitchell
Brain-Computer Interface Research Center for
Translational Neurological Research, Wadsworth
Center, New York State Department of Health,
Albany, New York

fMRI Spelling
Internet
Art

Predictive Spelling with a P300-based BCI:
Increasing Communication Rate

David B. Ryan and Eric W. Sellers
ETSU Brain-Computer Interface Laboratory, East
Tennessee State University, Johnson City, TN,
USA

N200
P300

Spelling
Internet
Art

Innovations in P300-based BCI Stimulus
Presentation Methods

George Townsend
ETSU Brain-Computer Interface Laboratory, East
Tennessee State University, Johnson City, TN,
USA

N200
P300

Spelling
Internet
Art

Operant conditioning to identify
independent, volitionally-controllable
patterns of neural activity

Steven M. Chase, Andrew S. Whitford, Andrew B.
Schwartz
Department of Neurobiology, University of
Pittsburgh

Spikes Algorithm
Development

Neurorehabilitation for Chronic-Phase
Stroke using a Brain-Machine Interface

Kimiko Kawashima, Keiichiro Shindo, Junichi
Ushiba, Meigen Liu
Keio University, Tokyo, Japan

MI Stroke

for P300 BCI. Recently, there have been several attempts to
move beyond this paradigm. In this section, we review the
original RC paradigm and its modifications and discuss a few
paradigms for better visual feedback in a closed loop P300 BCI
system.

ROW/COLUMN AND ITS MODIFICATIONS
The Farwell and Donchin (Farwell and Donchin, 1988) speller
BCI is shown in Figure 2. In this system, a 6 × 6 matrix of sym-
bols, comprising all 26 letters of the alphabet and 10 digits (0–9),

is presented to the user on a computer screen and each row and
column are flashed in a random order (Figure 2A). At any given
moment, the user focuses on the character he or she wishes to
communicate and silently counts the number of times the desired
character flashes. In response to flashing of the desired charac-
ter, the row and column of the desired character elicit a P300,
whereas the other 10 rows and columns do not. Detection of
the P300 makes it possible to match the responses to one of the
rows and one of the columns, and thus to identify the desired
character.
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FIGURE 2 | (A) Row/column paradigm: row and columns are flashed. (B) Single character paradigm: each character is flashed. (C,D) Checkerboard paradigm.
(E,F) Region based paradigm where a set of characters in level 1 (E) are expanded in level 2 for spelling character “B” (F).

The P300 speller paradigm has been a benchmark for P300
BCI systems. One of the greatest advantages of the P300 BCI is
that it does not require intensive user training, as the P300 com-
ponent results from endogenous attention-based brain function.
However, P300 detection for real-time applications presents sev-
eral challenges. Several issues need to be addressed before any
P300-based BCI can be taken outside the research laboratory and
put to practical use. Some important issues are that EEG sig-
nal patterns change in response to factors such as motivation,
level of attention, fatigue, mental state, learning, and other non-
stationarities that exist in the brain (Wolpaw et al., 2002). In
addition, users have unique EEG patterns that make it necessary

for individualized calibration. These factors create a need for
advanced digital signal processing algorithms to detect the P300
accurately and quickly. In spite of all the advanced signal pro-
cessing algorithms applied to this paradigm, its use in real-world
applications has been limited. One of the obstacles has been
low real-time P300 detection accuracy. Several human perceptual
phenomena such as attentional blink, repetition blindness, and
habituation are potential sources of error in P300 detection and
have been addressed in the literature (Fazel-Rezai, 2007, 2009; Citi
et al., 2008; Jin et al., 2010; Townsend et al., 2010).

Recently, two studies demonstrated that the matrix speller
can be operated more efficiently when target symbols are fixated
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(Brunner et al., 2010; Treder and Blankertz, 2010). To alleviate
this, Treder (Treder and Blankertz, 2010) performed an online
study using three different variants of fast-paced, non-gaze-
dependent visual spellers. Participants could use covert spatial
attention, non-spatial feature attention (i.e., attention to color
and form) in two paradigms and in a third paradigm they could
use covert, feature, and overt attention. They achieved mean sym-
bol selection accuracies of roughly 85–90% for one out of thirty
symbols and demonstrated that overt attention is not neces-
sary for highly accurate responses. Other work explored different
matrix sizes (Allison and Pineda, 2003; Sellers et al., 2006) and
investigated replacing the elements of the matrix with icons or
other choices instead of single letters and numbers (Bayliss and
Ballard, 2000; Serby et al., 2005; Allison and Pineda, 2006; Bell
et al., 2008; Salvaris and Sepulveda, 2009). In addition to these
efforts focused on improving P300 BCI performance or allowing
new paradigms for communication, newer work has addressed
usability and other new paradigms. In the following sections a
few recently introduced paradigms are explained.

SINGLE CHARACTER
The single character (SC) speller randomly flashes one charac-
ter at a time with a brief delay between flashes (Figure 2B). The
SC speller has a longer delay between flashes than the RC and
character classification can be made with fewer flashes per charac-
ter. With a 60 ms flash and 40 ms between flashes, 54 s are needed
to flash each character 15 times if a 36 character matrix is used.
In contrast with a 100 ms flash and 60 ms between flashes, the
RC requires only 28.8 s to present 30 flashes of each character.
Accordingly the RC flasher is about two times faster than the SC
flasher. However, the SC speller (15 flashes) results in larger P300
amplitudes compared to the RC speller with 15 flashes per col-
umn and row (Guger et al., 2009). Guger et al. (Guger et al., 2009)
compared the SC and RC speller in a study where five characters
were spelled. RC subjects reached a mean accuracy of 85.3% and
SC subjects reached 77.9% (N = 19).

CHECKERBOARD
The checkerboard (CB) paradigm was designed to overcome two
specific problems with the standard RC presentation method.
One, the CB eliminates instances when the same character flashes
twice in succession (also called a double target item flash). Two,
the CB paradigm reduces the amount of distraction and/or
inherent noise (i.e., non-target items receiving apparent target
responses) to the RC paradigm. Townsend et al. (Townsend
et al., 2010) showed that the CB produced significant improve-
ments in accuracy, as compared to the RC paradigm. The CB
paradigm disassociates the rows and columns of the matrix,
thereby eliminating double flashes and significantly reducing dis-
traction (Townsend et al., 2010). The original CB paradigm pre-
sented stimuli in an 8 × 9 matrix as shown in Figures 2C and D.
A virtual CB is superimposed onto the 72 items contained in the
matrix (not seen by viewers). Items in “white” squares randomly
populate one 6 × 6 matrix and items in “black” squares randomly
populate a second 6 × 6 matrix. Simultaneous adjacent flashes are
prohibited by the segregation of adjacent items into separate flash
groups, whereas the presentation of the 8 × 9 matrix appears to

flash at random. Once the randomly populated virtual rows and
columns are filled, the characters flash in sequential order: first,
the rows of the white matrix; second, the rows of the black matrix;
third, the columns of the white matrix; fourth, the columns of the
black matrix are flashed. Thus, the paradigm places a minimum
of six-six item group flashes or a maximum of 18-six items group
flashes between the flashes of any given matrix item. After all rows
and columns in both matrices have been flashed (24 flashes, com-
prising one complete sequence), the positions of the characters in
each virtual matrix are re-randomized and the next sequence of
flashes begins.

It is well documented that flanker tasks significantly increase
reaction time when nearby items belong to a response class that
competes with the target class (Sanders and Lamers, 2002). In the
RC paradigm, when adjacency-distraction occurs, incorrect selec-
tions are typically in the same row or column as the desired target
(Donchin et al., 2000; Fazel-Rezai, 2007; Townsend et al., 2010).

Imposing the constraint of a minimum of six intervening
flashes avoids the problem of overlapping target epochs (Martens
et al., 2009). The expansion to an 8 × 9 matrix increases the
amplitude of target items by reducing the probability of the tar-
get stimulus occurring (Allison and Pineda, 2003; Sellers et al.,
2006). Follow-up studies with the CBP have already begun to
improve on the original design. In one experiment, a predictive
spelling application was added to the CB paradigm and increased
effective information transfer rate (Ryan et al., 2011). Another
study included a mindfulness induction to evaluate the effects
of enhanced attentional resources, showing that mindfulness
induction significantly improved classification accuracy over a
non-induction control group in the RC and CB paradigms (Lakey
et al., 2011). A third study demonstrated that CB paradigm could
be further improved by suppressing (i.e., not flashing) the items
surrounding the attended item during calibration. As compared
to the standard CB paradigm calibration procedure, subsequent
online results showed that the suppression calibration procedure
produced significantly better performance in the testing phase of
the experiment. In the testing phase of the experiment, items sur-
rounding the target item flashed. Additionally, identical randomly
generated sequences for the classifier derived from suppression
calibration and those derived from non-suppression calibration.

REGION-BASED
The idea of region-based (RB) paradigm (Fazel-Rezai and Abhari,
2009) is to have flashes of several regions instead of rows and
columns. The character recognition is performed in two levels
(Fazel-Rezai and Ahmad, 2011). In the first level, the characters
are placed into seven groups located at different regions of the
screen, as shown in Figure 2E. Similar to the Farwell and Donchin
paradigm, the user is instructed to attend a specific character in
one of the seven groups while each group of seven characters
randomly flashes. After several flashes of each group the desired
group is identified. In the second level, individual characters of
the selected group are singly distributed into the seven regions as
shown in Figure 2F. Similarly to the first level, different regions
are flashed while the subject attends to one region (i.e., charac-
ter). The desired character is selected by identifying one of the
seven regions.
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It was shown (Fazel-Rezai and Abhari, 2009; Fazel-Rezai
and Ahmad, 2011) that the RB paradigm decreased the near-
target effect and human error and adjacency problem signifi-
cantly (Fazel-Rezai, 2007). It was found that the overall spelling
accuracies averaged for the same set of subjects, trials, and
characters for RC, SC, and two variations of RB paradigms
were 85%, 72.2%, 90.6%, and 86.1%, respectively, (Fazel-Rezai
et al., 2011). The RB and CB paradigms show a new direc-
tion in P300 BCI that can produce superior performance, and
may generally reduce the need for the RC approach to P300
BCIs.

MOVING AND ALTERNATIVE STIMULI
Another emerging approach involves motion- rather than flash-
ing stimuli. Guo (Guo et al., 2008) introduced a new paradigm
with five possible targets that represented left, right, up, down,
and enter commands for a virtual keyboard. In this task, instead
of flashing, a vertical bar below each of the five stimuli appeared
and moved leftward at random intervals for 140 ms. Results from
offline analyses suggested that this approach yielded visual evoked
potentials that could be useful in an offline BCI. The waveforms
did show a difference in P3 activity, but the authors suggested
that their new approach could be advantageous by highlight-
ing earlier components such as N2, which is recorded from
occipital-parietal regions and is related to area V5 of the visual
cortex.

Additional work has explored the moving stimulus paradigm.
Hong (Hong et al., 2009) described an offline comparison of two
6 × 6 matrices: one based on conventional flashing stimuli, and
another based on moving vertical bars. Results showed that the
moving stimuli elicited a stronger early negative component than
the flashing stimuli. Liu (Liu et al., 2010) presented the first online
BCI based on this new approach. After an offline calibration
session, subjects participated in online sessions that evaluated a
generic system to select one of six letters and a tool for web search-
ing. An information transfer rate of 42.1 bits/min was achieved,
averaged over 12 subjects.

Jin et al. (2012) compared three BCIs: one based on conven-
tional flashing stimuli, another based on moving stimuli, and a
hybrid condition in which the stimuli both flashed and moved.
All 10 subjects could use the new hybrid BCI system. Results also
showed that the hybrid approach was statistically superior to the
other two approaches in accuracy and practical bit rate.

Familiar faces, which are known to elicit the N170 and N400f
(“f” for faces) components of the ERP (Eimer, 2000), have also
been used in a P300 BCI (Kaufmann et al., 2011). Letters of the
P300 matrix were superimposed on the flashed behind the let-
ters. Taking into account the additional ERPs, the number of
sequences necessary to achieve 100% accuracy could be signifi-
cantly decreased and thus, bitrate increased.

The initial studies examining moving stimuli suggest that the
canonical “flash” approach used in most P300 BCIs may not be as
good as other stimulation methods. Just as future SSVEP BCIs
might more frequently employ newer stimulation approaches
(Bin et al., 2009, 2011), P300 BCIs might also start using stim-
uli that move or otherwise change in ways that elicit more distinct
ERPs. It is likely that paradigms such as the moving stimuli will be

further optimized in a fashion similar to the flashing BCIs because
so many possible stimulus manipulations exist.

P300 DETECTION
To properly detect P300 and increase transfer rate and accuracy,
which are interdependent, several issues should be considered.
(1) Attentional blink: it occurs if the intervals between two tar-
gets are less than 500 ms (Raymond et al., 1992). (2) Repetition
blindness: if two identical targets in a stream of non-targets are
flashed at intervals between 100 to 500 ms, the second target
may be missed (Kanwisher, 1987). (3) Target to target interval:
P300 amplitude is related to the interval between target events
(Gonsalvez and Polich, 2002). (4) Habituation: P300 amplitude
often decreases with repeated presentation of the same stimu-
lus although this may not occur in some BCI paradigms (Sellers
et al., 2006). When the user loses focus on the target character, the
P300 is not elicited, and thus accurate classification is not possi-
ble. In addition, human error affects the accuracy of the P300 BCI
(Fazel-Rezai, 2007), which should be considered in the design of
paradigms. Motivation may also influence performance in BCIs
(Kleih et al., 2010).

Similar to any pattern recognition problem, the P300 detec-
tion requires preprocessing, feature extraction, and classification.
The first step is to remove noise through preprocessing. Bandpass
filtering is a common preprocessing method in P300 speller
paradigms. Typically, raw EEG signals are filtered with a digital
bandpass filter with a low cutoff frequency of 0.1 Hz and high
cutoff frequency of 30 Hz. Traditionally, ERPs are averaged to
enhance P300 amplitude and suppress background EEG activity.
Then, features should be extracted from EEG signals for P300
detection. Different methods have been used for this purpose
such as discrete wavelet transform (Donchin et al., 2000), inde-
pendent component analysis (Xu et al., 2004; Serby et al., 2005),
and principal component analysis (McGillem and Aunon, 1977).
The final step is classification. Farwell and Donchin used step-
wise discriminant analysis (SWDA) followed by peak picking and
covariance evaluation (Farwell and Donchin, 1988). Other meth-
ods have also been used for the P300 detection such as, support
vector machine (SVM) (Thulasidas et al., 2006), and linear dis-
criminant analysis (LDA) (Guger et al., 2009). Although different
features and classifiers have been compared (Mirghasemi et al.,
2006a,b), there has not been a comprehensive comparison of all
different features extraction and classification methods applied
to the same data set. One study has, however, examined this
issue. Krusienski et al. (2006) showed that SWDA and Fisher’s
linear discriminant (FLD) provided the best overall performance
and implementation characteristics for practical classification, as
compared to Pearson’s correlation method (PCM), a linear sup-
port vector machine (LSVM), and a Gaussian kernel support
vector machine (GSVM). This indicates that the error, mostly
due to lack of P300 in EEG, resulted from factors such as human
error, adjacency effect, or mental fatigue explained in the previous
sections.

As an illustrative example, P300 detection process in the RC
speller is explained in this section. Rows and columns are high-
lighted randomly. The system sends an ID of the flashing char-
acter to the signal processing. The signal processing generates
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a buffer for each character and stores the incoming EEG data
around the flash. This is done until all RC buffers are filled
with X epochs (e.g., 30 flashes of each character). Then feature
extraction is performed. Finally, a classifier, such as LDA, creates
classification coefficients that are applied to the EEG features to
identify the matrix location most likely to be the desired character.
Each feature selected by the LDA receives a weight that corre-
sponds to the importance of the particular feature; features that
account for more variance in the signal have larger values than
features that account for less signal variance. If the LDA classifier
is correct, the character that the subject intended to select is pre-
sented on the computer screen as feedback to the subject. Then
the process starts again with the next character.

OTHER P300-BCI APPLICATIONS
There has been progress in developing BCI applications to accom-
plish new tasks or goals or explored to move a cursor in one of
four directions instead of directly select items (Piccione et al.,
2006; Citi et al., 2008). Another recent paper described a P300
BCI to control a mobile robot (Bell et al., 2008) or to control a
wheelchair (Iturrate et al., 2009).

BRAIN PAINTING
An even more novel direction involves utilization of BCIs for
creative expression and entertainment. One of the drawbacks
to the majority of today’s BCI systems has been their empha-
sis on function instead of usability, resulting in BCI software
which lacks the appeal and user experience we have grown accus-
tomed to from commercial products (Allison, 2009). Hence,
BCIs might work, but are often confusing, counter intuitive,
or boring for the user. When designing novel BCI systems,
developers should consider signal acquisition methods, innova-
tive paradigms, and also engaging interaction for the user. New
interaction aspects have generally received less attention in BCI
research.

BCIs that facilitate the completion of tasks that seem more
natural or intuitive have been shown to yield numerous bene-
fits. Development of the P300 BCI application known as “Brain
Painting” (BP) was created with a “user-centered design” in mind
(Kübler et al., 2008; Muenssinger et al., 2010).

By analyzing the wishes of end users, e.g., patients diagnosed
with amyotrophic lateral sclerosis (ALS), the BP application fulfils
basic human requirements of assisting expression, albeit through
an “alternative communication channel.” In this case, the alterna-
tive channel is a creative means of picture drawing as shown in
Figure 3. This has resulted in not only a new BCI design in terms
of novelty, but one that improves mood, motivation, and quality
of life in patient users. The positive emotions exhibited during
creative and playful expression have been well documented in
helping with patient rehabilitation (Radtke, 1994).

Users diagnosed with ALS recorded accuracy comparable or
better than healthy controls and expressed high motivation,
exceeding 8.5 on a visual analogue scale (VAS) ranging from
1 to 10 before and after painting sessions (Muenssinger et al.,
2010). Accuracy of the P300 black and white BP matrix equaled
that achieved using the P300-Spelling application (spelling:
93.20%, SD 7:5); painting: 92.60%, SD 5:7). BCI sessions lasted

FIGURE 3 | Example of a brain painting picture painted by a healthy

volunteer.

on average upwards of 1.5–3.5 h with repeated desire to re-use the
system.

In comparison to the current P300 BCI applications, such as
the speller, BP encourages improved user immersion with the
BCI device. Critically, multiple extended sessions assists in further
training the user with the P300 paradigm and results in improved
accuracy as well as greater overall enjoyment of BCI use, which
certainly is an advantage when trying to embed a new technology
for widespread use.

VIRTUAL REALITY
To operate a BCI to control a virtual environment, several
demands must be met: (1) biosignal amplifiers must be functional
while the subject is moving; (2) the recordings should ideally be
done with a rather small portable device to avoid collisions and
irritations within the environment; (3) the BCI system must be
coupled with the virtual reality (VR) system for real-time exper-
iments and (4) a special BCI communication interface must be
developed to have enough degrees of freedom available to control
the VR system. Figure 4 illustrates the necessary components in
detail. A 3D projector is located next to a projection wall for back
projections. The subject can be positioned in front the projection
wall to avoid shadows and is equipped with position tracker to
capture movements, shutter glasses for 3D effects and the biosig-
nal amplifier including electrodes for EEG recordings. The XVR
(eXtreme VR, VRmedia, Pisa, Italy) PC controls the projector, the
position tracker, and the shutter glass. The biosignal amplifier is
transmitting the EEG data to the SSVEP—P300 BCI system which
is connected to the XVR PC via UDP connection to exchange
control commands.

The virtual smart home itself consists of different rooms
whereby each room is equipped with several different devices
that can be controlled: TV, MP3 player, telephone, lights, doors,
etc. Therefore, all the different commands were summarized in
seven control masks: a light mask, a music mask, a phone mask,
a temperature mask, a TV mask, a move mask, and a go to mask.
Figure 5 shows the light mask and as an example the correspond-
ing XVR bird’s eye view. For further details see (Edlinger et al.,
2009).
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FIGURE 4 | Scheme of virtual environment setup.

FIGURE 5 | (A) Smart home interface mask. (B) Bird′s eye view of the virtual apartment with domotic devices to be operated like the TV set, music set, room
light, or chess board.

GAMING
Twitter (Twitter Inc.) is a social network that enables the user
to send and read messages. The messages are limited to 140
characters and are displayed in the authors profile page. Messages
can be sent via the Twitter website or via smart phones or SMS
(Short Message Service). Twitter also provides an application pro-
gramming interface to send and receive SMS. Second Life (SL)
is another application which is a free 3D online virtual world

developed by the American company Linden Lab. It was launched
on June 23, 2003 and already five years later the platform had
15 million registered accounts whereas on average 60,000 users
were online at the same time. Only the free client software package
“Second Life Viewer” and an account are necessary to participate.

One of the main activities in SL is socializing with other
so-called residents whereas every resident represents a person in
the real world. Users can perform different actions like holding
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business meetings, take pictures or make movies, attend courses,
etc. Communication takes place via text chats, voice chats, and
gestures. Hence, handicapped people could also participate in
SL like any other user if an appropriate interface were available.
A P300 controller was interfaced using a SL controller in C++
Simulink S-functions.

In order to participate in sending tweets and SL, appropriate
interface masks were designed and the P300 base system was mod-
ified accordingly. The upper panel in Figure 6 shows an UML
diagram of the actions required to use e.g., the service Twitter.
Hence the standard P300 spelling matrix based on a 6 × 6 char-
acters matrix was enhanced to provide the necessary commands.
Therefore the first two lines contain the symbols representing cor-
responding Twitter services and the remaining characters are used
for spelling purpose. The matrix contains a total of 54 charac-
ters. Initial training of the system was done for 10 characters.
Then, another user asked questions via Twitter and the BCI User
had to answer different questions every other day. Therefore, in
total, the BCI User had to use the interface on nine different days

and selected between 6 and 36 characters every day. The changes
between the first and last sessions are noteworthy. The first ses-
sion lasted 11:09 min and the user spelled 13 characters, but made
three mistakes. The user was told to correct any mistake, which
yielded an average of 51 s selection time per character. During
the last session, the user spelled 27 characters in 6:38 min with
only one mistake and an average selection time of 15 s per charac-
ter. Also, the number of flashes per character was reduced from
8 to only 3 flashes to increase the speed (Edlinger and Guger,
2011).

For the control of SL, like the virtual smart home control,
three different interface masks were developed. The lower panel
in Figure 6 displays a screenshot of a SL scene and the main mask
as shown having 31 different classes to select from. Other masks
for control like “chatting” (55 classes) and “searching” (40 classes)
were developed. Each of the icons represents an actual command
associated with it. If a certain icon is selected, SL is notified to
execute this individual action with actually using keyboard events.
The SL control and performance have been tested in initial efforts,

FIGURE 6 | Upper panel: UML diagram of service Twitter and

P300—Twitter interface mask for control. Lower panel: Screenshot
of Second life situation and Second Life interface main mask to
walk forward/backward, turn left/right, slide left/right, climb,

teleport home, show map, turn around, activate/deactivate running
mode, start/stop flying, decline, activate/deactivate mouse-look
view, enter search mask, take snapshot, start chat, quit, and
stand-by.
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and preliminary results indicate performance very similar to the
virtual smart home scenario (Edlinger and Guger, 2011).

THE FIRST COMMERCIAL BCI SYSTEM
The Intendix BCI system was designed to be operated by care-
givers or the patient’s family at home. It consists of active EEG
electrodes to avoid abrasion of the skin, a portable biosignal
amplifier and a laptop or netbook running the software under
Windows (Figure 7A). The electrodes are integrated into the cap
to allow a fast and easy equipment mounting. The system allows
viewing the raw EEG to inspect data quality, but automatically
informs inexperienced users about the data quality on a specific
channel.

This control can be realized by extracting the P300 evoked
potential from the EEG data in real-time. Therefore, the char-
acters of the English alphabet, Arabic numbers, and icons were
arranged in a matrix on a computer screen (Figure 7B). Then
the characters are highlighted in a random order and the per-
son has the task to concentrate on the specific character he/she
wants to spell. At the beginning, the BCI system is trained based
on the P300 response of several characters with multiple flashes
per character to adapt to the specific person.

When the system is started for the first time, user training has
to be performed. Typically, the user has to spell 5–10 given target
characters for training. The EEG data is used to calculate the user
specific weight vectors, which is stored for later usage. Then the
software switches automatically into the spelling mode and the
user can spell as many characters as wanted.

The user can perform different actions: (1) copy the spelled
text into an Editor, (2) copy the text into an email, (3) send
the text via text-to-speech facilities to the loud speakers, (4) print
the text, or (5) send the text via UDP to another computer.
Specific icons exist for each of these functions.

The number of flashes for each classification can be selected
by the user to improve speed and accuracy, or the user can also
use a statistical approach that automatically configures the BCI
accordingly. In the latter approach, no characters are selected if

the user is not looking at the matrix or does not want to use the
speller.

P300 HYBRID BCIs
Another emerging direction with P300 BCIs, and indeed all
major BCI approaches, involves combining the BCI with another
communication system. Some groups have begun developing
“hybrid” BCI systems (Pfurtscheller et al., 2010; Allison et al.,
2012), which may combine a P300 BCI with another BCI.

Combining a P300 BCI with an SSVEP BCI was first described
two years ago (Allison et al., 2010). The proposed approach would
involve letters or backgrounds that oscillate as well as flash, which
may produce SSVEP activity that could help to confirm or iden-
tify the desired target. A somewhat different approach has recently
been implemented in a P300/SSVEP hybrid BCI. In this approach,
SSVEP activity is used to assess whether the subject is focused on
the spelling task. If no SSVEP activity is found, then the system
assumes that the user is not paying attention to the spelling sys-
tem and does not output any characters (Panicker et al., 2011).
The paradigm produces what could be considered a “no-control
state” that is essential for practical BCI applications (e.g., Internet
browsing, pauses to think about what to do next).

Recently, for the control of a smart home environment, a
P300 based system was developed to selected different actions
like switching on the TV. This BCI system was combined with an
SSVEP system to switch on/off the flashing matrix (Edlinger et al.,
2011). Other work combined a P300 BCI with a BCI based on
imagined movement (Li et al., 2010). Six subjects viewed a display
with several flashing boxes that contained the word “up,” “down,”
or “stop.” By focusing on one of these boxes, subjects generated
P300s that controlled the vertical position of a cursor. Subjects
could simultaneously and independently control the horizontal
position by imagining left or right hand movement.

A new hybrid BCI combines P300 and MI based BCIs for dif-
ferent processes (Su et al., 2011). Users can navigate continuously
through a virtual Smart Home environment by imagining left or
right hand movement. If the user entered one area of this virtual

FIGURE 7 | (A) The intendix BCI running on the laptop and user wearing the active electrodes. (B) User interface with 50 characters and computer keyboard
like layout.
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environment, a control panel appeared that allowed the subject
to select an item on a television control panel. If the user entered
a different area, then he or she saw a similar control panel for a
stereo. Each control panel allowed the user to choose one of five
items. Hence, this hybrid BCI allowed users to select the type of
brain activity best suited to each task—imagined movement ERD
for navigation and P300 for selection.

VALIDATION
One important emerging direction is field (i.e., external) valida-
tion with end users, particularly people with severe disabilities.
Many groups, videos, and demonstrations only report perfor-
mance with one user, or a selected group of users. Many reports
only describe results in laboratory settings under ideal circum-
stances, and do not assess user preferences. Recent work has
helped to counteract these problems. This section reviews results
of a large scale field study with 100 healthy subjects, and other
validations efforts with severely disabled users in home settings.

PERFORMANCE OF THE P300 SPELLER IN A GROUP STUDY
One hundred subjects tested a P300 based BCI system to spell a
five character word with only 5 min of training. EEG data were
acquired while the subject attended to a 36 character matrix to
spell the word WATER. Two different versions of the P300 speller
were used: (1) the RC speller that flashes an entire column or
row of characters and (2) a SC speller that flashes each charac-
ter individually. The subjects were free to decide which version
to test. Nineteen subjects opted to test both versions The BCI
system classifier was trained on the data collected for the word
WATER. During the real-time phase of the experiment, the sub-
ject spelled the word LUCAS, and was provided with feedback as
to the character selected by the classifier after each of the five let-
ters. Close to seventy-three percent of subjects (72.8%; N = 81)
were able to spell with 100% accuracy in the RC paradigm and
55.3% (N = 38) spelled with 100% accuracy in the SC paradigm.
Less than 3% of the subjects did not spell any character correctly.
This study shows that high spelling accuracy can be achieved with
the P300 BCI system using approximately 5 min of training data
for a large number of healthy subjects, and that the RC paradigm
is superior to the SC paradigm. Eighty-nine percent of the 63 RC
subjects were able to spell with accuracy 80–100%. A similar study
using a MI BCI with N = 99 subjects showed that only 19% of
the subjects were able to achieve an accuracy of 80–100% (Guger
et al., 2003). This study was done with only two bipolar recordings
to minimize the needed electrodes. But still these large differences
in accuracy suggest that, even with much less training data, the
P300 based BCI is superior to the MI BCI.

Very recent work repeated the same P300 training and spelling
task with dry electrodes. Twenty-three subjects donned a dry
electrode cap, trained the system with the word “LUCAS” and
then spelled the word “WATER” with an intendiX P300 BCI. The
subjects attained a mean accuracy of 90.4%, which was not sta-
tistically different from the mean accuracy of 91.0% reported
in Guger et al. (2009). Since dry electrodes could substantially
reduce preparation and cleaning time and dependence on out-
side support, this new work could help make P300 BCIs practical
for more users (Guger et al., 2012).

These large differences in accuracy underscore why P300 BCIs
may be appealing for certain tasks, such as direct selection of one
out of several items. On the other hand, MI or SSVEP BCIs may
be inherently better suited to continuous movement control, as
discussed below (Jackson et al., 2006; Mason et al., 2007).

Overall, these group results are encouraging. Most users could
choose one of 36 items with good accuracy, in a field setting with
minimal training. Users generally reported via questionnaires
that the system was not fatiguing or difficult. However, further
research should compare different types of BCI approaches (P300,
SSVEP, ERD, and others), possibly including non-EEG signals
and/or hybrid combinations, across different applications to help
identify the best BCI for each user. Different user groups should
be considered, especially persons with neurological disorders and
severe movement disabilities.

PATIENT VALIDATION
Several studies have shown that P300 BCIs can provide commu-
nication to patients in field settings. The BP and Intendix systems
described above were validated with ALS users in their home set-
tings, as were other P300 BCI systems (Sellers et al., 2006, 2010;
Vaughan et al., 2006; Nijboer et al., 2008). A recent conference
presentation showed initial results of the first large scale field P300
BCI validation effort with patients in home settings. The results
further indicated that P300 BCIs can be viable real-world com-
munication systems for severely disabled users (Vaughan et al.,
2006).

In a first systematic evaluation, Zickler (Zickler et al., 2011)
had four severely disabled patients rate their subjective work-
load and satisfaction with a P300 based communication device
which was integrated into a commercially available assistive com-
munication Software (Qualilife®, 2012). Spelling, emailing, and
internet browsing were with this P300 BCI application. All partic-
ipants reported mental or temporal demand as the main source
of their subjectively felt workload while physical demand, frus-
tration and effort were generally judged as not contributing to
subjectively felt workload. Users were very satisfied with the relia-
bility and learnability of the BCI, but not with speed and aesthetic
design (Zickler et al., 2011). Patients expressed that the “adjust-
ment” (the gel and the relatively long preparation time) and
“comfort” of the cap must be improved. They also expressed that
the system be more compact and faster. Moreover, in its current
state they would not only use the BCI if necessitated by disease
progression. One person who used the BP BCI was an artist and
reported that she had been unable to paint for years and the BCI
allowed her to regain the ability to paint (Muenssinger et al.,
2010). A person using a P300 BCI reported that he would be
unable to work without the BCI (Sellers et al., 2010).

CHALLENGES AND SOLUTIONS
These results show that P300 BCI systems can provide effective
communication. However, very few severely disabled users rely on
them, or have been exposed to them. Several practical concerns
limit wider P300 BCI adoption:

(1) P300 BCIs, like any BCI, require significant support. An
expert is needed to identify and assemble the components,
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customize parameters to each user, and address acute prob-
lems. Severely disabled users also need help to don the
electrode cap before each session, and need someone to wash
their hair and the cap afterward. Improved software and dry
electrodes could help considerably (Guger et al., 2012).

(2) Many P300 BCIs may be less effective in persons who can-
not control gaze, such as severely disabled users (Brunner
et al., 2010). This problem may be alleviated through differ-
ent visual stimuli that do not require gaze shifting (Allison
et al., 2008) or using a non-visual modality (Klobassa et al.,
2009; Brouwer and van Erp, 2010). However, these solutions
might reduce information transfer rate (Kübler et al., 2009).

(3) P300 BCIs require a monitor or other external stimulation
device to generate the flashes, tones, or other events that
elicit P300s. Although subjects generally report that these
events are not distracting or annoying, this could become
a greater problem with long term use or different display
parameters. On the other hand, research could focus fur-
ther on displays that do not produce negative side effects.
Also, even BCIs that do not rely on stimuli to generate events
may still rely on stimuli for other aspects of system opera-
tion, such as an avatar’s location in a virtual environment or
feedback.

(4) P300 BCIs are well suited to some tasks, and not others. P300
BCIs have been validated for tasks like spelling, smart home
control, or internet browsing, which all entail direct selec-
tion. P300 BCIs may be less effective for other tasks. This
problem might be reduced with new paradigms and tasks, or
hybridizing with another BCI.

CONCLUSIONS
As demonstrated, considerable progress has been made toward
improving the P300 BCI paradigm, especially in the last few years.
This is reasonable, since P300 BCIs have many appealing features

including a very short training time and a high ITR. New avenues
in P300 BCI research include paradigms for eliciting P300s, sig-
nal processing methods, applications, and hybrid BCIs. Future
research should also investigate optimal electrode positions and
the number of electrodes and to use source derivation and pre-
processing algorithms to increase the SNR. Currently, mostly
mono-polar recordings are used and the data are downsampled
and bandpass filtered. These directions are creating new oppor-
tunities to make P300 BCIs faster, more accurate, easier to use,
and better suited to the needs of individual users. Moreover, they
are changing the face of P300 BCIs, since the canonical RC speller
will be largely replaced with new types of spellers and wholly new
applications such as Smart Home control or BP. Ongoing research
efforts over the next several years will further develop P300 BCIs
and related systems.

One issue that is rightly emerging as a major research direction
is subjective reporting. Most BCI articles report only objective
measures such as information transfer rate or accuracy. While
these factors are important, they do not assess whether peo-
ple enjoy using the BCI, ideally across the different conditions
explored in the article. Thus, many articles may introduce new
BCIs or paradigms that users dislike for some reason. Some recent
studies have employed questionnaires to ask subjects whether
using a P300 BCI is disturbing, annoying, tiring, and/or challeng-
ing (Guger et al., 2009, 2012; Muenssinger et al., 2010; Zickler
et al., 2011; Jin et al., 2012). Subjects generally do not report sig-
nificant problems with P300 BCIs. However, questionnaires and
other means should still be employed to further explore subjective
factors.
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