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Predictive Spelling With a P300-Based 
Brain–Computer Interface: Increasing the Rate 

of Communication 

D. B. Ryan1, G. E. Frye1, G. Townsend2, D. R. Berry1, S. Mesa-G1, 
N. A. Gates1, and E. W. Sellers1 

1East Tennessee State University, Johnson City 
2Algoma University, Sault Ste. Marie, Ontario, Canada 

This study compared a conventional P300 speller brain–computer interface (BCI) to 
one used in conjunction with a predictive spelling program. Performance differences 
in accuracy, bit rate, selections per minute, and output characters per minute (OCM) 
were examined. An 8 × 9 matrix of letters, numbers, and other keyboard commands 
was used. Participants (N = 24) were required to correctly complete the same 58 char­
acter sentence (i.e., correcting for errors) using the predictive speller (PS) and the 
nonpredictive speller (NS), counterbalanced. The PS produced significantly higher 
OCMs than the NS. Time to complete the task in the PS condition was 12 min 43 s 
as compared to 20 min 20 sec in the NS condition. Despite the marked improvement 
in overall output, accuracy was significantly higher in the NS paradigm. P300 ampli­
tudes were significantly larger in the NS than in the PS paradigm, which is attributed 
to increased workload and task demands. These results demonstrate the potential 
efficacy of predictive spelling in the context of BCI. 

1. INTRODUCTION 

Brain–computer interface (BCI) technology can help people with severe neu­
romuscular disease communicate (Wolpaw & Birbaumer, 2006). For example, 
amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that may even­
tually cause people to become completely paralyzed, or locked-in to their bodies, 
and typically causes death within 2 to 5 years (Kunst, 2004). Until recently, it was 
assumed that cognitive function remains intact even in advanced stages of ALS; 
however, current research shows that some people with ALS experience some type 
of cognitive impairment, although the actual number of people affected is still 
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debated (Murphy et al., 2007). Nonetheless, people with advanced ALS have little 
or no means of effective communication given existing alternative and augmen­
tative communication (AAC) devices. For these people, a BCI may be the only 
option for independent communication. 

The P300 BCI is based on event-related potentials (ERPs). An ERP is a time-
locked electrophysiological brain response to a meaningful stimulus. The P300 
ERP is a positive going deflection occurring approximately 300 ms postevent. 
P300 BCI has received much attention because it requires little training due to 
the P300 ERP being elicited by meaningful attended stimuli (Picton, 1992; Ritter & 
Vaughan, 1969), and as compared to other BCIs it produces high bit rates (e.g., 
Serby et al., 2005). The first P300 BCI was described by Farwell and Donchin 
(1988). Since that time, approximately 90 articles addressing the topic have been 
published. Moreover, people have now begun to use the P300 BCI in their homes 
on a daily basis (Sellers, Vaughan, & Wolpaw, in press) and Vaughan et al. (2006) 
have described a research program focused on placing BCIs in numerous homes of 
people with severe communication disorders. The system uses BCI2000 software 
(Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004), and can provide 
icon selection, alphanumeric character selection, and multiple menus. These com­
ponents can provide input to other software and even environmental control. It 
is now clear that a P300 BCI can be an effective method of communication for 
ALS patients (e.g., Kubler et al., 2005; Nijboer et al., 2008; Sellers & Donchin, 2006; 
Sellers et al., in press). 

The P300 BCI first models a given participants response to attended stimuli 
and then uses that information to try and determine which of the items being 
presented is the one that the subject wishes to select. Typically, the P300 BCI can 
provide between three and eight selections per minute; this study examines how 
a predictive speller can transform these selections into additional output charac­
ters and the predictive speller’s effects on performance measures. Previous studies 
have measured performance through accuracy (percentage correct), selections per 
minute (total selections correct or incorrect in a minute), and bit rate (formulated 
from accuracy, number of possible choices, and time to complete a task). In this 
study, we introduce a new performance measure “output characters per minute,” 
or OCM. OCM was calculated by taking the total selections to complete a session 
(including spaces, and a selection to end the session) and dividing it by the total 
time to complete the task. This new measure was used to calculate the contribu­
tion of the predictive speller program. It is important to include a performance 
measure such as OCM when examining the effectiveness of a BCI system because 
it provides more useful information than accuracy and/or bit rate alone. That is, 
OCM provides information about how “powerful” each selection is in terms of 
what it can accomplish. In other words, OCM is more or less independent of accu­
racy and bit rate. In addition, OCM is certainly more important to the BCI user 
than bit rate because it provides a realistic assessment of the system output, which 
bit rate cannot. 

Predictive spelling applications have previously been examined in the context 
of AAC devices. Typically these comparisons use interfaces such as manual typing 
(Venkatagiri, 1994), mouth stick typing (Koester & Levine, 1994b, 1996), or touch 
screen typing (Trnka, McCaw, Yarrington, McCoy, & Pennington, 2009). A primary 
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goal of this research is to examine and maximize the benefits of word predic­
tion by reducing user effort and maximizing output; however, these studies have 
produced conflicting results regarding the efficacy of predictive spelling appli­
cations (Garay-Vitoria & Abascal, 2004, 2006). Some researchers have suggested 
that keystroke savings as high as 50 to 60% is a realistic limit of the benefits of 
delayed word prediction with an AAC user (Copestake, 1997; Lesher & Rinkus, 
2002). Conversely, it has been noted that significant cognitive demands occur with 
the use of word prediction programs and that savings in keystrokes do not neces­
sarily lead to an increase in the rate of communication (Koester & Levine, 1994a; 
Venkatagiri, 1994). 

Because a predictive speller may enable the user to produce more information 
with fewer selections, it has the ability to enhance communication for those who 
depend on a P300 BCI. Although predictive spellers have been used in-home with 
ALS patients (Sellers et al., in press), a formal comparison between the use of a 
predictive P300-speller and a conventional P300 speller has never been conducted. 
Therefore, we integrated a predictive speller software package into a P300 BCI and 
compared its performance to a nonpredictive (i.e., conventional) system. 

1.1. The Present Study 

To approximate in-home use, participants were required to accurately copy a 
sentence and stop the session once complete. This is the first study to hold the 
participant to the same simple, yet tedious, demands of an in-home user. To make 
P300 BCIs more viable for everyday home use by individuals who rely on com­
munication devices, the program must be able to quickly output words without 
sacrificing accuracy. Conventional performance measures (i.e., accuracy, bit rate) 
were not designed for an additional output from a second program such as a 
predictive speller. These performance measures are based only on single selec­
tions made by the user; they do not encompass the potential output of a selection. 
Thus, OCM was used to accurately measure the advantage or disadvantage of the 
predictive speller. 

We predicted that the predictive spelling (PS) paradigm will improve per­
formance, in terms of OCM, as compared to the nonpredictive spelling (NS) 
paradigm because the same number of selections per minute (or bit rate) should 
allow participants to select several items at a time (i.e., words). 

We also predict that in the PS paradigm, P300 amplitude may be reduced and 
P300 latency may be lengthened due to increases in workload or dual task inter­
ference in the PS paradigm (e.g., Isreal, Chesney, Wickens, & Donchin, 1980; Isreal, 
Wickens, Chesney, & Donchin, 1980; Kramer, Wickens, & Donchin, 1985; Wickens, 
Kramer, Vanasse, & Donchin, 1983). It is reasonable to assume that using a PS in 
addition to a BCI is more cognitively demanding than using a conventional BCI. In 
the conventional method, other than attending to the desired item, the only task 
of the participant is to evaluate the feedback between selections and determine 
what to select next, either backspace or the next character. Using a PS requires 
more attentional resources than the conventional method. An individual using a 
PS must (a) evaluate whether an item is correct; (b) decide if an incorrect item must 
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be corrected; (c) evaluate the list of suggested words from the predictive speller; 
and (d) determine whether the next selection will be a backspace, an undo, a word 
from the list, or the next character of a word. Indeed, predictive spellers used in 
non-BCI context have shown an increase in cognitive demand (Koester & Levine, 
1994; Venkatagiri, 1994). These cognitive effects will become evident in the perfor­
mance measures, but any negative effects will be overshadowed by the increase in 
communication rate. 

2. METHODS 

2.1. Participants 

Twenty-nine able-bodied adults were recruited from the East Tennessee State 
University undergraduate subject pool. Twenty-four (10 men, 14 women; age 
range = 18–47) completed the experiment. All were naive to BCI use, and none 
had uncorrected visual impairments or any known cognitive deficit. The study 
was approved by the East Tennessee State University Institutional Review Board, 
and each subject gave informed consent. 

2.2. Experimental Paradigm 

Each participant completed two experimental sessions on separate days within a 
1-week period. Participants completed one PS and one NS session; sessions were 
counterbalanced to control for order effects. Each session consisted of a calibration 
phase and an online test phase using an identical 8 × 9 matrix. Classification coef­
ficients (described next) were generated with data collected during the calibration 
phase and subsequently applied during the online test phase. In each phase, par­
ticipants were provided target items to select. In the calibration phase, items were 
displayed at the top of the monitor with the next item-to-spell (the target item) 
indicated in parentheses at the end of the word. As shown in Figure 1A, if the 
assigned word was “DRIVING,” it would appear at the beginning of the run as: 
DRIVING (D). The participant’s task was to attend to (or count) the number of 
times the item in parentheses flashed. After the first item, there was a 3.5-s pause 
before the next target appeared in parentheses (e.g., DRIVING (R)). This process 
repeated until the word was complete (one run). Data were collected from five 
such runs (four words and one numeric string). For both the PS and NS, each set 
of items flashed for 62.5 ms. This was followed by a 62.5-ms interstimulus inter­
val. Thus, a flash occurred every 125 ms (i.e., eight flashes/second). For each of the 
36 calibration items, five complete sequences (i.e., including 10 flashes of the tar­
get item) occurred. The flashes were presented using the checkerboard paradigm, 
which presented items in a quasi-random format. The checkerboard paradigm 
allows neither adjacent items to flash in the same group nor any item to flash 
without a minimum of six intervening flashes (for more details, see Townsend 
et al., 2010). 
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FIGURE 1 A) The 8 × 9 matrix used during the calibration phase and online spelling 
phase of the experiment. In this example, the target item “D” is noted by the letter in 
parentheses at the end of the word. Participants are instructed to count the number 
of time the target item flashes. After all items have flashed a predetermined number 
of times, there is a 3.5-s pause in which the item in parentheses changes to the next 
letter of the word to indicate the next target item. B) The 8 × 9 matrix and additional 
windows used during the online spelling phase of the experiment. Right: the flashing 
matrix used to make item selections. Left top: the sentence target window. Left mid­
dle: the sentence output window. Left bottom: the predictive spelling window used 
in the PS condition (see text for details). 
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During the online test phase of the NS paradigm, participants copied a sen­
tence from a Notepad “target window” to a blank Notepad “output window” 
(Figure 1B, top and middle left). The target sentence consisted of 58 selections, 
including spaces between words, a period, and a Sleep command to end the ses­
sion. At the beginning of the test phase the output window was blank and the 
participant’s task was to copy the entire sentence correctly; lowercase letters were 
used for the output window to reduce possible confusion between the target and 
output windows. After each item selection feedback was presented to the partici­
pant (as a translucent character that filled approximately 30% of the screen), and 
the keystroke was entered into the Notepad output window. In the event of an 
incorrect selection, the participant was required to use the Backspace command 
to erase the error and then correct the selection. After each selection a 6-s pause 
was provided before the next set of sequences began to flash. This pause was pro­
vided to ensure that the participant had sufficient time to evaluate the feedback 
presented by the BCI, decide what the next item selection should be, and find the 
correct item in the 8 × 9 matrix. 

The online test phase of the PS paradigm was identical to that of the NS except 
for the addition of the Quillsoft WordQ2 (version 2.5) predictive spelling program 
(Figure 1B, left bottom). BCI2000 (Schalk et al., 2004) includes a user datagram pro­
tocol (UDP) that can send output to peripheral programs. The interface between 
WordQ2 and BCI2000 was achieved using the BCIKeyboard, a program written 
and supported by the BCI2000 software project. Once an item had been selected 
and appeared in the output window, the WordQ2 window would populate with 
seven words, each preceded by a number. In the event that participants desired 
to select a word from the list, they could “select” the corresponding number in 
the 8 × 9 matrix on the next selection by attending to the flashes of the desired 
number. In Figure 1B, once the “y” had been selected, the WordQ2 window gen­
erates the word “your” as choice 1. Thus, to select the word your, the participant 
would select the number 1 from the matrix. Upon selecting the 1 from the matrix, 
WordQ2 would type the remaining characters “our” and a space, thus complet­
ing the word in the output window. At this time, WordQ2 would populate with 
the seven most probable words. If the participant’s target word did not appear in 
the WordQ2 list, it was necessary to provide additional characters until the word 
appeared in the predictive window or it was completed. As every participant was 
spelling the same sentence, the learning vocabulary feature of WordQ2 was dis­
abled to prevent the program from listing each target word after a single selection. 
In the event that a word was incorrectly selected (e.g., 2 was selected instead of 
1), the participant could select Escape (Esc) from the matrix and WordQ2 would 
undo the selection. Thus, returning the participant to the previous location in the 
sentence. However, if a participant was attending to Esc and the resulting selection 
was incorrect, the participant was required to backspace all of the incorrect charac­
ters individually (a limitation of WordQ2 for the current application). In this way, 
a predictive speller can provide powerful correct selections with time savings and 
powerful errors with time losses. 

Not all errors required a correction. Under certain conditions, the predictive 
speller also corrected misspelled words. For example, if the output window read 
“plos” the predictive speller would still list “please” as one of the options and 
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would correct the errors if “please” was selected. If End or RtArw was selected the 
cursor in the output window would not move; it only cost the participant a single 
selection. Participants were not required to correct an error if F5 was selected. In 
this case, a date/time stamp would appear in the Notepad window. The partici­
pant was asked ignore the mistake and attend to the next selection. Once this error 
was observed it was addressed by changing F5 to F6 in the matrix, which has no 
output in Notepad thus keeping the error and correct selection count consistent 
across all participants. 

2.3. Sentence Selection 

The length of the sentence is typical of a moderately easy sentence in English, the 
selected words are representative of the mean length of words in English, and five 
of the 10 words are in the 200 most common English words (Brysbaert & New, 
2009). Thus, the sentence used in the online test phase was made up of 50% of the 
200 most commonly used words in the English language. 

2.4. Data Acquisition, Processing 

Participants were seated in a chair approximately 1 m from a computer monitor 
that displayed an 8 × 9 matrix of letters, numbers, and other keyboard com­
mands. A 72-item speller matrix was used because it is similar to the one designed 
for home use (Sellers et al., 2010). Moreover, larger matrices have been shown 
to increase P300 amplitude as the probability of the desired item is reduced 
(Allison & Pineda, 2003; Sellers, Krusienski, McFarland, Vaughan, & Wolpaw, 
2006). 

Electroencephalograph (EEG) was recorded with a 32-channel electrode cap 
embedded with tin electrodes (Electro-Cap International, Inc., Eaton, OH). All 
channels were referenced to the right mastoid and grounded to the left mastoid. 
Impedance on each channel was reduced below 10.0 k� before testing began. 
Two g.tec (Guger Technologies, Graz, Austria) 16-channel biosignal amplifiers 
(version 2) were used. The amplifiers have a ±250 mV input sensitivity and are 
amplified to ±2 V before the ADC converts the signals to digital format. Signals 
were sampled at a rate of 256 Hz, high-pass filtered at 0.5 Hz, and low-pass filtered 
at 30 Hz. Before analyses EEG data were moving average filtered and downsam­
pled to 20 Hz. Thirty-two channels were collected for the possibility of future 
analysis, but only electrodes Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz (Sharbrough, 
Lesser, Lüders, Nuwer, & Picton, 1991) were used for BCI operation (Krusienski, 
Sellers, McFarland, Vaughan, & Wolpaw, 2008). 

Due to the P300s low signal-to-noise ratio, each item must be flashed multiple 
times and the results averaged (Cohen & Polich, 1997). During calibration, the 
number of target item flashes was constant across participants and presentation 
methods. Item sets of six were flashed in quasi-random groups, with two flashes 
of each of the 72 items of the matrix flashing twice per sequence, and 10 times 
in the five sequences of each selection. In the calibration phase for the PS and NS 
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conditions, 36 target items were presented; each of the 36 item selections contained 
120 flashes (360 targets and 3,960 nontargets). 

2.5. Classification 

Classification coefficients were determined with a stepwise linear discriminate 
analysis (SWLDA) algorithm (Draper & Smith, 1981) implemented in MATLAB 
(version 7.6 R2008a, stepwisefit function). The SWLDA algorithm performs for­
ward and backward partial regression procedures to select the spatiotemporal 
features (i.e., features determined by the combination of electrode location and 
specific time points during the recording epoch) that account for the most unique 
variance. Initially, the single feature that accounts for the most unique variance 
is added to the model (forward regression), then the feature accounting for the 
most unique remaining variance is added (forward regression). The model is then 
tested to determine if each feature of the two-feature model still accounts for a 
significant amount of unique variance (backward regression); if so, both features 
remain in the model and a third is selected. This forward and backward process 
continues until the model includes the maximum number of features (set to 60) or 
until no additional features reach the criteria for entry or removal from the model 
(p < .10 for entry and p > .15 for removal). SWLDA outputs a set of spatiotem­
poral classification coefficients that are subsequently applied to the averaged ERP 
responses during the online phase. 

Before the online phase, the number of sequences was optimized for each partic­
ipant using the maximum written symbol rate (or symbols/minute; Furdea et al., 
2009; Townsend et al., 2010). This metric determines the number of item selections 
a participant can correctly make in 1 min, taking into account error correction. 
Using the written symbol rate, nearly all participants were presented with fewer 
than five sequences during the online test phase. In theory, the calibration phase 
should yield equal numbers of sequences for each participant in each paradigm 
because the calibration tasks are identical for each session. Given our goal of com­
paring the PS and NS in an unbiased means, we sought to match the number 
of sequences in the PS and NS conditions. Thus, five of the participants were 
removed from the study due to having a difference in optimal sequences equal to 
or greater than two after calibration. Each sequence of flashes requires three sec­
onds; thus, a difference of two or more sequences yields a minimum of 6 additional 
seconds per selection. Such a large difference would have confounded the primary 
goal of the study. By eliminating these five participants the two paradigms were 
better matched for time and accuracy. 

After the matrix flashed the predetermined number of times during online test­
ing, ERPs were averaged for each channel and each cell of the 72-matrix item 
locations, and then the spatiotemporal coefficients were multiplied by the ampli­
tude value of each model feature. The matrix item with the highest summed score 
was selected by the classifier and presented to the participant as feedback. The 
method used was analogous to that used by Krusienski et al. (2008), with the 
exception that eight channels were used. 

The present experimental paradigm derived a classifier for each session inde­
pendently because within participant differences between sessions could influence 
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performance. For example, if a participant has had a variable amount of sleep or 
caffeine it is possible that such variables would affect attentional processes and 
waveform morphology. In addition, removing and replacing the cap may result in 
electrodes being located at slightly different locations, contributing to deleterious 
effects on classification performance in the subsequent session. Thus, perform­
ing two calibration sessions should have provided classifiers best suited for a 
given session. 

2.6. Dependent Measures 

Accuracy was measured by taking the number of correct selections (i.e., feedback 
matched the character to which the participant was attending) and dividing this 
value by the total number of selections per session. The formula for calculating 
bit rate described by Pierce (1980) incorporates the number of possible targets (N) 
and the probability that the target is accurately classified (P): 

Bit Rate = log2N + P + (1 − P) log2(1 − P/N − 1) (1) 

The result is divided by number of minutes in a session yields bits per minute. The 
calculation “selections per minute” was performed by taking the total number of 
selections and dividing by the total time of the session. OCM was calculated by 
taking the 58 total selections in each session (including sleep) and dividing it by 
the total time of the PS session. OCM was used to calculate the contribution of the 
predictive speller program. This calculation includes the time it took for the partic­
ipant to correct errors while the number of correct target selections (58) remained 
static. Therefore, the more errors a participant made, the more time it took to finish 
the session, resulting in lower output characters per minute. However, PS and NS 
selections per minute were a direct result of sets per sequence and time, thus not 
affected by error correction. 

3. RESULTS 

A 2  × 2 mixed model analysis of variance—Order (NS first vs. PS first) × 
Condition (NS vs. PS)—was used to examine if an order effect was present in 
the data. The results provided insufficient evidence to reject the null hypothesis, 
F(1, 22) = 0.185, p = .671. Thus, we collapsed across the conditions and analyzed 
the data using paired t tests to examine the differences between the PS and NS con­
ditions on the measure of mean accuracy, selections per minute, bit rate, theoretical 
bit rate, output characters per minute, and waveform latency and amplitude. 

3.1. Online Accuracy, Bit Rate, and Theoretical Bit Rate 

Table 1 shows raw scores and means for accuracy, bit rate, and theoretical bit rate. 
Online accuracy was significantly higher for NS (M = 89.80%, SD = 7.78) than 
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Table 1: Online Test Phase Accuracy (Acc), Bit Rate (BR), and Theoretical Bit Rate (Theo BR) 
for the Predictive Speller (PS) and Nonpredictive Speller (NS) 
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Subject PS Acc NS Acc PS BR NS BR PS Theo BR NS Theo BR 

1 96.88 95.31 23.70 28.26 39.33 56.09 
2 88.89 87.50 19.93 19.54 32.62 32.38 
3 70.00 88.16 11.48 16.46 17.11 24.58 
4 79.59 89.86 18.78 20.41 33.52 33.82 
5 91.89 92.65 17.71 15.39 26.33 21.50 
6 87.18 95.31 21.73 22.58 38.70 37.39 
7 91.67 100.00 21.21 24.85 34.96 41.13 
8 81.13 87.50 15.79 21.72 24.66 38.86 
9 80.95 70.83 17.35 17.60 28.64 35.05 

10 82.35 98.33 22.28 29.98 44.12 59.45 
11 80.00 91.18 12.11 14.91 16.87 20.79 
12 77.59 82.50 11.55 12.69 16.10 17.70 
13 82.22 93.94 17.61 22.00 28.91 36.45 
14 94.29 77.17 22.01 14.57 36.00 22.81 
15 91.18 95.31 19.10 20.51 29.70 32.05 
16 94.29 85.25 18.52 15.62 27.51 23.29 
17 72.50 77.23 8.18 11.45 10.48 15.98 
18 91.89 100.00 26.69 31.12 52.65 61.70 
19 100.00 100.00 25.00 24.85 41.13 41.13 
20 96.88 91.18 21.25 19.00 33.01 29.70 
21 86.67 91.43 16.06 14.95 23.92 20.82 
22 57.58 83.67 5.02 15.13 6.19 22.62 
23 67.07 96.77 11.80 16.55 18.46 23.06 
24 94.44 84.15 20.27 15.28 31.54 22.82 

M 84.88 89.80 17.71 19.39 28.85 32.13 
SD 10.59 7.78 5.38 5.39 10.95 12.83 
SE 2.16 1.59 1.10 1.10 2.24 2.62 

for the PS (M = 84.88%, SD = 10.59), t(23) = 2.15, p = .04, d = 0.40. We suspect 
that lower accuracy in PS is attributed to the higher workload and/or dual task 
processing requirements of the PS paradigm. In addition, we found marginal dif­
ferences between PS bit rate and NS bit rate (M = 17.71, SD = 5.38; M = 19.39, 
SD = 5.37, respectively), t(23) = 2.04, p = .053, d = 0.39. Theoretical bit rate (i.e., 
bit rate with the time between selections removed) is presented for comparison to 
studies that report bit rate with the time between selections removed; in this study 
6 s were provided between each item selection. 

3.2. Selections per Minute 

Table 2 shows raw scores and means for PS and NS sets per sequence, time to 
complete the sentence, selections per minute, and OCM. We compared means of 
PS selections per minute against NS selections per minute (M = 3.71, SD = 0.75; 
M = 3.76, SD = 0.75, respectively) and found no difference between groups, 
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Table 2: Online Test Phase Sets per Sequence (Sets/Seq), Time to Complete the Sentence 
(Comp(min)), and selections per Minute (Sel/min) in the Predictive Speller (PS) and 

Nonpredictive Speller (NS) Paradigms, and the Predictive Output Characters per Minute (OCM) 
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PS NS PS NS PS NS PS 
Subject Sets/Seq Sets/Seq Comp(min) Comp(min) Sel/min Sel/min OCM 

1 3.00 2.00 7.80 12.70 4.10 5.04 7.44 
2 3.00 3.00 9.00 17.90 4.00 4.02 6.44 
3 4.00 4.00 24.00 22.70 3.33 3.35 2.42 
4 2.50 3.00 10.92 17.15 4.49 4.02 5.31 
5 4.00 5.00 11.00 23.58 3.36 2.88 5.27 
6 2.50 3.00 8.67 15.90 4.50 4.03 6.69 
7 3.00 3.00 8.90 14.40 4.04 4.03 6.52 
8 3.50 2.50 14.47 16.10 3.66 4.47 4.01 
9 3.00 2.00 10.40 23.90 4.04 5.02 5.58 

10 2.00 2.00 10.10 11.90 5.05 5.04 5.74 
11 5.00 5.00 19.15 23.70 2.87 2.87 3.03 
12 5.00 5.00 20.20 27.90 2.87 2.87 2.87 
13 3.00 3.00 11.25 16.40 4.00 4.02 5.16 
14 3.00 3.50 8.75 25.20 4.00 3.65 6.63 
15 3.50 3.50 9.25 17.50 3.68 3.66 6.27 
16 4.00 4.00 10.40 18.20 3.37 3.35 5.58 
17 5.00 5.00 17.75 35.25 2.25 2.87 3.27 
18 2.00 2.00 7.30 11.50 5.07 5.04 7.95 
19 3.00 3.00 7.65 14.40 4.05 4.03 7.58 
20 3.50 3.50 8.70 18.60 3.68 3.66 6.67 
21 4.00 5.00 13.40 24.45 3.36 2.86 4.33 
22 3.50 4.00 16.95 29.30 1.95 3.34 3.42 
23 3.50 5.00 22.45 21.60 3.65 2.87 2.58 
24 3.50 4.00 9.80 24.50 3.67 3.35 5.92 

M 3.42 3.54 12.43 20.20 3.71 3.76 5.28 
SD 0.830 1.062 4.963 5.978 0.745 0.749 1.666 
SE 0.169 0.217 1.013 1.220 0.152 0.153 0.340 

t(23) = 0.49, p = .62, d = 0.10. Although this comparison provided null find­
ings, when compared to OCM significant differences were revealed. OCM was 
significantly higher than PS selections per minute (M = 5.28, SD = 1.67), 
t(23) = 6.05, p < .001, d = 0.78. Similarly, OCM was significantly higher than NS 
selections per minute, t(23) = 5.61, p < .001, d = 0.76. Moreover in total time to 
complete the sentence (in minutes), the PS was significantly faster than the NS 
paradigm (M = 12.43, SD = 4.96; M = 20.20, SD = 5.98, respectively), t(23) = 7.52, 
p < .001, d = 0.84. 

3.3. Waveform Morphologies 

The PS and NS produced virtually identical waveforms. Our analyses focused 
on the electrodes Cz, Pz, Po7, and Po8 because most of the P300 amplitude 
change in BCI applications is captured in these four electrodes (Kaper, Meinicke, 
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FIGURE 2 A) Target waveforms for electrode locations Cz, Pz, Po7, and Po8 for each 
of the 24 participants; PS paradigm data are presented in black and NS paradigm data 
are presented in gray. (Amplitude units are µV.) B) Grand mean waveforms for all 
24 participants at electrode locations Cz, Pz, Po7, and Po8. The top row consists of tar­
get responses for both paradigms, and the bottom row consists of nontarget responses 
for both paradigms. PS data are presented in black and NS data are presented in gray. 

Grossekathoefer, Lingner, & Ritter, 2004; Krusienski et al., 2008). Figure 2A shows 
average target waveforms for each of the 24 participants. Figure 2B shows the 
grand mean waveforms for the target waveforms (top row) and the nontarget 
waveforms (bottom row). The difference in the positive peak at electrode location 
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Cz around 200 ms was marginally higher in the NS than in the PS paradigm 
(M = 3.45, SD = 1.47; M = 2.82, SD = 1.71, respectively), t(23) = 2.06, p = .051, 
d = 0.39. In addition, the NS peak at electrode location Pz around 200 ms was 
significantly larger than the PS peak (M = 3.82, SD = 1.49; M = 3.24, SD = 1.81, 
respectively), t(23) = 2.34, p = .028, d = 0.43. 

4. DISCUSSION 

The primary goal of this study was to test the efficiency of a predictive speller 
program in conjunction with a P300 BCI. The main hypotheses were that the 
predictive speller should improve overall character output and possibly affect 
waveform morphology. The first hypothesis was supported, even though accuracy 
was significantly lower in the PS paradigm, and bit rate and selections per minute 
were statistically equivalent in both paradigms. Despite the NS advantage in accu­
racy, the PS showed an average time advantage of 7 min 37 s over the NS, and 
OCM were significantly higher for the PS than the NS by 1.51 characters/minute. 
Given the current maximum character selection rate of approximately four selec­
tions per minute in P300 BCIs (also see Lenhardt, Kaper, & Ritter, 2008; Townsend 
et al., 2010), these results impressively convert to an additional 91.2 output char­
acters per hour, or nearly 1.5 per minute. These results suggest that a predictive 
speller can provide a substantial advantage to an individual communicating via a 
P300 Speller in an online environment. 

The significant difference in accuracy between the two paradigms may be a 
result of increased workload and/or task difficulty associated with the PS. This 
hypothesis is indirectly supported by the finding of lower amplitude responses in 
the PS condition at the Cz and Pz electrode locations. Previous P300 research has 
shown that workload (i.e., the measure of the interaction between task difficulty 
and an individual’s ability to perform a given task; Gopher & Donchin, 1986), 
and dual task interference can significantly reduce P300 amplitude and increase 
P300 latency (Gopher & Donchin, 1986; Isreal, Chesney, et al., 1980; Isreal, Wickens, 
et al., 1980; Kramer, Wickens, & Donchin, 1983; Kramer et al., 1985; Wickens et al., 
1983). The relatively small amplitude differences in the current study may be due 
to the fact that the increase in workload was discontinuous (i.e., increased during 
the time in which target stimuli were not flashing). This is in contrast to studies 
investigating workload that typically use continuous increases in task demands 
(e.g., tracking a stimulus). In addition, the AAC literature also suggests that cog­
nitive demand is increased when a predictive speller is used (Koester & Levine, 
1994; Venkatagiri, 1994a). 

As this study used naive participants, we believe that with training PS accuracy 
will increase, thus increasing OCM. Gopher and Donchin (1986) suggested that the 
effects of workload decrease with practice. In addition, the predictive speller can 
learn to adapt to the individual over time, which we did not allow in the current 
study. 

Further support of the inefficiency of the naive participants to use a predic­
tive speller is shown by the number of selections required for an ideal user to 
complete the sentence; only 31 selections were necessary using the untrained 
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predictive speller. However, many participants failed to select a word from the 
predictive speller at the first opportunity, leading to additional unnecessary 
selections. 

5. CONCLUSIONS 

These results demonstrate the potential efficacy of predictive spelling in the 
context of BCI. Future research should be conducted in an ALS population to 
determine if similar improvements in output character selections are obtained. 

REFERENCES 

Allison, B. Z., & Pineda, J. A. (2003). ERPs evoked by different matrix sizes: Implications 
for a brain computer interface (BCI) system. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 11, 110–113. 

Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation 
of current word frequency norms and the introduction of a new and improved word 
frequency measure for American English. Behavior Research Methods, 41, 977–990. 

Cohen, J. D., & Polich, J. (1997). On the number of trials needed for P300. International Journal 
of Psychophysiology, 25(3), 6. 

Copestake, A. (1997). Augmented and alternative NLP techniques for augmentative and 
alternative communication. Paper presented at the Natural Language Processing for 
Communication Aids. Stanford, CA: Stanford University. 

Draper, N. R., & Smith, H. (1981). Applied regression analysis (2nd ed.). New York, NY: Wiley. 
Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a men­

tal prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical 
Neurophysiology, 70, 510–523. 

Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F., Birbaumer, N., & Kübler, 
A. (2009). An auditory oddball (P300) spelling system for brain–computer interfaces. 
Psychophysiology, 46, 617–625. 

Garay-Vitoria, N., & Abascal, J. (2004). A comparison of prediction techniques to enhance 
the communication rate. User-Centered Interaction Paradigms for Universal Access in 
the Information Society: 8th ERCIM Workshop on User Interfaces for All, 3196, 400–417. 
doi:10.1007/b95185 

Garay-Vitoria, N., & Abascal, J. (2006). Text prediction systems: A survey. Universal Access 
in the Information Society, 4, 20. 

Gopher, D., & Donchin, E. (1986). Workload: An examination of the concept. In K. R. K. Boff, 
T. Lloyd, & P. James (Eds.), Handbook of perception and human performance, Vol. 2: Cognitive 
processes and performance (pp. 1–49). Oxford, UK: Wiley & Sons. 

Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking dif­
ficulty: evidence for multiple resources in dual-task performance. Psychophysiology, 17, 
259–273. 

Isreal, J. B., Wickens, C. D., Chesney, G. L., & Donchin, E. (1980). The event-related brain 
potential as an index of display-monitoring workload. Human Factors, 22, 211–224. 

Kaper, M.,	 Meinicke, P., Grossekathoefer, U., Lingner, T., & Ritter, H. (2004). BCI 
Competition 2003—Data set IIb: support vector machines for the P300 speller paradigm. 
IEEE Trans Biomed Eng, 51, 1073–1076. 



83 P300 Predictive Speller 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
e
l
l
e
r
s
,
 
E
r
i
c
 
W
.
]
 
A
t
:
 
0
6
:
0
1
 
2
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0


 

Koester, H. H., & Levine, S. P. (1994a). Learning and performance of able-bodied individuals 
using scanning systems with and without word prediction. Assistive Technology, 6(1), 
42–53. 

Koester, H. H., & Levine, S. P. (1994b). Modeling the speed of text entry with a word 
prediction interface. IEEE Transactions on Rehabilitation Engineering, 2(3), 10. 

Koester, H. H., & Levine, S. P. (1996). Effect of a word prediction feature on user perfor­
mance. Augmentative and Alternative Communication, 12(3), 23. 

Kramer, A. F., Wickens, C. D., & Donchin, E. (1983). An analysis of the pro­
cessing requirements of a complex perceptual-motor task. Human Factors, 25, 
597–621. 

Kramer, A. F., Wickens, C. D., & Donchin, E. (1985). Processing of stimulus properties: evi­
dence for dual-task integrality. Journal of Experimental Psychology. Human Perception and 
Performance, 11, 393–408. 

Krusienski, D. J., Sellers, E. W., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2008). 
Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 167(1), 
15–21. 

Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G. . . . Wolpaw, 
J. R. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain– 
computer interface. Neurology, 64, 1775–1777. 

Kunst, C. B. (2004). Complex genetics of amyotrophic lateral sclerosis. American Journal of 
Human Genetics, 75, 933–947. 

Lenhardt, A., Kaper, M., & Ritter, H. J. (2008). An adaptive P300-based online brain– 
computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 
16, 121–130. 

Lesher, G., & Rinkus, G. (2002). Domain-specific word prediction for augmentative communi­
cation. Paper presented at the RESNA Annual Conference. Spencerport, NY: Enkidu 
Research, Inc. 

Murphy, J. M., Henry, R. G., Langmore, S., Kramer, J. H., Miller, B. L., & Lomen-Hoerth, C. 
(2007). Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Archives 
of Neurology, 64, 530–534. 

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., . . . Kübler, 
A. (2008). A P300-based brain–computer interface for people with amyotrophic lateral 
sclerosis. Clinical Neurophysiology, 119, 1909–1916. 

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical 
Neurophysiology, 9, 456–479. 

Pierce, J. R. (1980). An introduction to information theory (pp. 145–165). New York: Dover. 
Ritter, W., & Vaughan, H. G., Jr. (1969). Averaged evoked responses in vigilance and 

discrimination: A reassessment. Science, 164(3877), 326–328. 
Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). 

BCI2000: A general-purpose brain–computer interface (BCI) system. IEEE Transactions 
on Biomedical Engineering, 51, 1034–1043. 

Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: Initial tests by 
ALS patients. Clinical Neurophysiology, 117, 538–548. 

Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2006). 
A P300 event-related potential brain–computer interface (BCI): The effects of matrix size 
and inter stimulus interval on performance. Biological Psychology, 73, 242–252. 

Sellers, E. W., Vaughan, T. M., & Wolpaw, J. R. (in press). A brain–computer interface for 
long-term independent home use. Amyotrophic Lateral Sclerosis. 

Sellers, E. W., Vaughan, T. M., Wolpaw, J. R. (2010). A brain-computer interface for long-term 
independent home use. Amyotrophic Lateral Sclerosis, 11(5), 449–455. 



84 Ryan et al. 

Serby, H., Yom-Tov, E., Inbar, G.F., (2005). An improved P300-based brain-computer inter­
face. IEEE Trans Neural Syst Rehabil Eng.; 13(1): 89–98. 

Sharbrough, F. C. G., Lesser, R. P., Lüders, H., Nuwer, M., & Picton, W. (1991). AEEGS 
guidelines for standard electrode position nomenclature. Clinical Neurophysiology, 8, 
202–204. 

Townsend, G. T., LaPallo, B. K., Boulay, C., Krusienski, D. J., Frye, G. E., Hauser, C. K., . . .  
Sellers, E. W. (2010). A novel P300-based brain–computer interface stimulus presentation 
paradigm: moving beyond rows and columns. Clinical Neurophysiology, 121, 1109–1120. 
doi:10.1016/j.clinph.2010.01.030 

Trnka, K., McCaw, J., Yarrington, D., McCoy, K. F., & Pennington, C. (2009). User interaction 
with word prediction: the effects of prediction quality. ACM Transactions on Accessible 
Computing, 1(3), 34. 

Vaughan, T. M., McFarland, D. J., Schalk, G., Sarnacki, W. A., Krusienski, D. J., Sellers, E. W., 
& Wolpaw, J. R. (2006). The Wadsworth BCI Research and Development Program: At 
home with BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 
229–233. 

Venkatagiri, H. S. (1994). Effect of window size on rate of communication in a lexical 
prediction AAC system. AAC Augmentative and Alternative Communication, 10, 8.  

Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: 
a psychophysiological analysis of the reciprocity of information-processing resources. 
Science, 221(4615), 1080–1082. 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., Vaughan, T. M. (2002). 
Brain-computer interfaces for communication and control. Clinical Neurophysiology. 
113(6):767–791.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
e
l
l
e
r
s
,
 
E
r
i
c
 
W
.
]
 
A
t
:
 
0
6
:
0
1
 
2
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0


 





Accessibility Report





		Filename: 

		Ryan_etal_2011_.pdf









		Report created by: 

		



		Organization: 

		







[Enter personal and organization information through the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 2



		Passed manually: 0



		Failed manually: 0



		Skipped: 1



		Passed: 26



		Failed: 3







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Needs manual check		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Needs manual check		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Failed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Failed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Passed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Skipped		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Failed		Appropriate nesting










Back to Top

