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BCIS THAT USE P300 EVENT-RELATED POTENTIALS 

ERIC W. SELLERS ,  YAEL  ARBEL , AND  EMANUEL DONCHIN
 

27 of visual evoked potentials (i.e., VEPs) have been used as signal 
28 features for BCIs. The design and operation of BCIs that use 
29 endogenous ERP components differ both in principle and 
30 practice from those of BCIs that use exogenous ERP compo­
31 nents. This chapter focuses on BCIs that use P300, an endoge­
32 nous ERP component. Chapter 14 discusses BCIs that use 
33 exogenous VEP components.    

34 THE P300 ERP AND P300-BASED BCIS

35  The P300 is a positive deflection that occurs in the scalp­
36 recorded EEG after a stimulus that is delivered under a specifi c 
37 set of circumstances. It was first described by Sutton et al. 
38 ( 1965 ) and has been widely studied since then to explore higher 
39 cortical functions in humans (for review see Bashore & Van 
40 der Molen, 1991; Donchin, 1981; Duncan et al., 2009; Fabiani 
41 et al., 1987; Polich, 2007; Pritchard,  1981). Although it oft en 
42 occurs at a latency of about 300 msec relative to the eliciting 
43 stimulus (hence the designation of P300), this latency may 
44 vary from 250 to 750 msec (Comerchero & Polich,  1999 ; 
45 Magliero et al., 1984; McCarthy & Donchin, 1981; Polich, 

12
1 

2 

3 Event-related brain potentials (ERPs) in the EEG are man­
4 ifestations at the scalp of neural activity that is triggered 
5 by, and is involved in the processing of, specifi c events. 
6 The voltages that constitute the ERP are embedded within the 
7 general EEG activity recordable from the scalp and are usually 
8 quite small relative to the  ongoing EEG. However, because the 
9 ERPs are time-locked to events, and follow a constant time 

10 course, they can be extracted by averaging multiple trials of 
11 eliciting events. The result is a series of positive and negative 
12 voltage deflections that are referred to as components . Th e suc­
13 cessive components typically differ in their stimulus rate and 
14 amplitude dependence, their topographical distributions, and 
15 their relationships to the information processing activities of 
16 the brain. The components that can be recorded over the fi rst 
17 150 msec following the eliciting event tend to reflect activity in 
18 the primary sensory systems, and their waveforms and scalp 
19 distributions vary with the modality of the eliciting stimuli. 
20 These are known as the  exogenous components. Longer-latency 
21 components tend to reflect information processing activity 
22 that is cognitive in nature and is thus less dependent on stimu­
23 lus modality and more dependent on the significance of the 
24 eliciting event in the subject’s concurrent tasks. They are usu­
25 ally referred to as  endogenous components. 
26 Both early (exogenous) and late (endogenous) components 

2007). This variability in latency reflects the fact that the P300 46
 

is elicited by the decision, not necessarily conscious, that a rare 47
 

event has occurred, and the decision latency can, and does, 48
 

vary with the nature (e.g., the difficulty) of the decision (Kutas 49
 

et al., 1977). The P300 is usually largest over central parietal 50
 

scalp and attenuates gradually as distance from this area 51
 

increases. 52
 

In 1988, P300 was first used as the basis for a BCI (Farwell 53
 

& Donchin,  1988 ), and a steadily growing number of research 54
 

groups are currently pursuing its BCI applications. Current 55
 

P300-based BCIs allow users to select items displayed on a 56
 

computer screen. Thus, while the process is very diff erent, a 57
 

P300-based BCI selection is essentially equivalent to a selec- 58
 

tion by a standard computer keyboard. Because P300-based 59
 

BCIs are noninvasive, use hardware that is portable and inex- 60
 

pensive, and can provide reliable performance, they are essen- 61
 

tially the only BCIs that are currently being used outside of the 62
 

laboratory by severely disabled people for important purposes 63
 

in their daily lives, such as communication and environmental 64
 

control. Furthermore, many different laboratories are explor- 65
 

ing possibilities for further increasing the capabilities and use- 66
 

fulness of P300-based BCIs. 67
 

 The subsequent sections discuss the nature of the P300, 68
 

address the principles of its BCI usage, review the major areas 69
 

of P300-based BCI research, summarize current clinical usage 70
 

of P300-based BCIs, and consider the prospects for their fur- 71
 

ther development.     72
 

THE ODDBALL PARADIGM	 73 

 Th e specifi c set of circumstances for eliciting the P300 ERP is 74
 

known as the  Oddball Paradigm. This paradigm has three 75
 

essential attributes (Donchin & Coles,  1988 ): 76
 

• 	 A subject is presented with a series of events (i.e., 77
 

78stimuli), each of which falls into one of two classes. 


• 	     The events that fall into one of the classes are less 79
 

80frequent than those that fall into the other class.


• 	     The subject performs a task that requires 81
 

82
classifying each event into one of the two 

classes.     83
 

 The events that fall into the less-frequent class (i.e., the 84
 

oddball events) elicit a P300. As long as an experimental design 85
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1 adopts the three attributes of the oddball paradigm, any stimu­
2 lus and any classification task can elicit a P300. 
3 It is important to note that, although the two classes are 
4 generally two different classes of stimuli, this is not a require­
5 ment. As shown by Sutton et al. ( 1967 ), a P300 can be elicited 
6 by an event that consists of the absence of a stimulus, if 
7 that absence satisfies the conditions of the oddball paradigm. 
8 That is, a P300 ERP is elicited by rare events that violate the 
9 subject’s expectations. 

10 Most P300 studies have used visual or auditory stimuli. 
11 Figure  12–1  illustrates a typical P300 experiment. The letters O 
12 and  X flash on a video screen in a random order at a rate of one 
13 per second (i.e., the stimulus onset asynchrony). Th e X occurs 
14 infrequently (e.g., 20 %  of the flashes) and is thus the oddball 
15 stimulus, while the  O occurs frequently (e.g., the other 80 %  of 
16 the fl ashes). The subject is asked to count the number of times 
17 one of the stimuli (e.g.,  X) occurs. Each time a stimulus occurs, 
18 a marker is placed in the data file to indicate the identity of the 
19 stimulus,  X or O. Each stimulus is presented on the screen for 
20 100 msec, and then the screen is blank for 900 msec (i.e., the 
21 interstimulus interval [ISI]) until the presentation of the next 
22 stimulus. Figure  12–1 A shows the time course of the experi­
23 mental events. 
24 Figure  12–1 B displays the ERPs elicited by the oddball 
25 stimulus at midline electrode locations Fz, Cz, and Pz of the 
26 10–20 system (see fig.  12–2 ) for 800 msec after each stimulus. 
27 The three responses show a typical P300 scalp topography: 
28 the most prominent potential is a positive component occur­
29 ring about 350 msec after the  X stimulus; and it is largest at 
30 the Pz electrode and attenuates at more anterior and poste­
31 rior locations. It should be noted that the results would be 
32 essentially the same even if the subject had been asked to 
33 count the  O stimuli rather than the  X stimuli: P300 is always 
34 elicited by the rare events (i.e., the  X stimuli in this example) 

Set 0 
Set 1 
Set 2 
Set 3=1&2 
Set 4=0&3 

FZ 

FCZ 

CZC3 

CPZ 

C4 

P4 
PZ 

P8 

PO8 
PO4POZ

PO3 

P3
P7 

PO7 

O1 OZ 

O2 

Figure 12.2 Electrode locations evaluated for use in a P300-based BCI by 
Krusienski et al. ( 2008 ). EEG was recorded from 64 electrodes. The sets of 
electrodes shown here were compared in regard to offl ine classifi cation 
accuracy as described in the text. 

(Duncan-Johnson & Donchin, 1977). The next most salient 35 

components are the P100 and N200 components, which are 36 

considered to be exogenous components even though they can 37 

be modulated to some extent by attention (Heinze et al.,  1994 ; 38 

Mangun, 1995; Mangun et al., 1993). 39 

As noted, P300 latency may vary from 250 to 750 msec 40 

(Comerchero & Polich, 1999; Magliero, et al., 1984; McCarthy 41 

& Donchin, 1981; Polich, 2007). This variability is thought to 42 

refl ect differences in the amounts of time it takes to classify 43 

A Oddball sequence 20% X, 80% O 

O O X O O O X O 

100 ms 900 ms 

B –6 

–4 
Fz 
Cz 
Pz 

–2 
–5 

Fz 

Cz 

Pz 

0 

5 

0 

2

A
m

pl
itu

de
 (
μV

) 

4 

6 
–50 0 400 800 

C 

1000 ms (SOA) 

Time (ms) 

Figure 12.1 (A). Time course of rare (i.e., oddball) and common stimuli in a standard oddball protocol. (B) Average oddball ERPs from a subject for electrode 
locations Fz, Cz, and Pz, showing a progressively larger positive deflection from frontal, to central, to posterior sites. (C) Topographical distribution of the average 
ERP amplitude 300–400 msec after the oddball stimulus. The large positive ERP component (i.e., P300) is maximum at Pz and is widely distributed over posterior-
parietal regions. 
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1 different kinds of events. Kutas et al. ( 1977 ) demonstrated the 
2 relationship between the latency of the P300 and the diffi  culty 
3 of the classification task.     

4 P300 ORIGIN AND FUNCTION 

Some of the most compelling evidence related to the origin of 
6 the P300 has been provided by Knight and colleagues through 
7 studies in patients with brain lesions. Knight et al. ( 1989 ) 
8 showed that lesions in the temporal parietal junction abolished 
9 the auditory P300 at posterior scalp sites, even though the 

patients could still discriminate between the stimuli. In con­
11 trast, damage to lateral parietal cortex did not impair P300 
12 generation. These results suggest that lateral parietal cortex is 
13 not critical in auditory P300 generation. Additional studies 
14 have extended these findings. In separate experiments using 

auditory, visual, or somatic stimuli, Knight and Scabini ( 1998 ) 
16 showed that prefrontal and lateral parietal lesions had no 
17 effect on P300 latency or amplitude. In contrast, temporopari­
18 etal junction lesions markedly reduced auditory and soma­
19 tosensory P300s and reduced visual P300s. Soltani and 

Knight ( 2000 ) provide a comprehensive review of this impor­
21 tant work. 
22 Recently, studies that combine the high temporal resolu­
23 tion of EEG with the high topographical resolution of fMRI 
24 have provided some additional insight concerning the neural 

substrate of P300. In a standard auditory oddball task, Mulert 
26 et al. ( 2004 ) found the P300 to be accompanied by increased 
27 fMRI activity in the supplementary motor cortex, the anterior 
28 cingulate cortex, the temporoparietal junction, the insula, and 
29 the middle frontal gyrus. Furthermore, this fMRI activity was 

greater and occurred earlier in the right hemisphere than in 
31 the left hemisphere (Bledowski et al.,  2004 ; Mulert et al.,  2004 ). 
32 In patient studies involving intracranial recording, EEG, and 
33 fMRI, Linden ( 2005 ) implicated the inferior parietal lobule 
34 and the temporoparietal junction in P300 generation. In regard 

to the fMRI data (see chapter 4 in this volume), it should be
 
36 noted that blood-flow-related activity measured over several 

37 seconds cannot be confidently attributed to an event (i.e., 

38 P300) that occurs somewhere in this period and lasts about 

39 100 msec. Thus, fMRI results concerning the area(s) responsi­

ble for P300 generation must be interpreted cautiously.
41  The most comprehensive account of the functional role of 
42 P300 is called the context-updating model (Donchin, 1981; 
43 Donchin & Coles,  1988 ). Although this model does not make 
44 assumptions regarding the actual neural generators of P300, it 

proposes that the P300 reflects context-updating operations. 
46 According to the model, as stimuli are presented and evalu­
47 ated, the degree to which the events are consistent with the 
48 current model of the context is assessed. When an event vio­
49 lates the expectations dictated by the model, and when the vio­

lation requires the model to be revised (i.e.,  context updating), 
51 a P300 is elicited. The model accounts for many of the salient 
52 characteristics of the P300 and is supported by a variety of 
53 behavioral and psychophysiological studies (e.g., (Adrover­
54 Roig & Barcelo,  2010 ; Barcelo & Knight,  2007 ; Barcelo et al., 

2007; Dien et al, 2003; Linden, 2005; Luu et al., 2007). 

P300 AMPLITUDE AND STABILITY 56
 

 The extensive studies of the past 45 years have defi ned 57
 

the characteristics of the P300 in considerable detail. Here we 58
 

focus on issues of particular importance to P300-based BCIs. 59
 

One issue particularly relevant for BCI usage comprises 60
 

the factors that determine P300 amplitude. P300 amplitude 61
 

is positively correlated with the time interval between events 62
 

(i.e., stimuli). All other things being equal, longer interstimu- 63
 

lus intervals result in higher amplitude P300s, at least up to 64
 

intervals of about 8 sec (Polich,  1990 ; Polich & Bondurant, 65
 

1997 ). Whereas P300 amplitude in a standard oddball experi- 66
 

ment is usually 10–20  μ V, the P300s produced by BCI applica- 67
 

tions are usually 4–10  μ V. This is presumably due to the rapid 68
 

stimulus presentation rates used by P300-based BCIs and the 69
 

resulting overlap of the ERPs to successive stimuli (Marten 70
 

et al., 2009; Woldorff,  1993 ). P300 amplitude is also aff ected by 71
 

moment-to-moment changes in the probability of the oddball 72
 

stimulus (Donchin,  1981 ; Donchin & Isreal,  1980 ; Horst et al., 73
 

1980 ; Squires et al.,  1977 ). For example, if, by chance, the odd- 74
 

ball stimulus occurs two or more times in succession, P300 75
 

amplitude is reduced after the first oddball stimulus. 76
 

P300 amplitude is also affected by the sum total of the sub- 77
 

ject’s concurrent activities. Thus, when a subject who is per- 78
 

forming a task that elicits a P300 is asked to perform a 79
 

secondary task at the same time, P300 amplitude decreases 80
 

(Isreal, Chesney, et al.,  1980 ; Isreal, Wickens, et al.,  1980 ; 81
 

Kramer et al.,  1983 ; Sirevaag et al.,  1989 ). Protocols may be 82
 

designed that concurrently incorporate two different tasks and 83
 

two different sets of stimuli and thereby elicit two diff erent 84
 

P300s. For example, Sirevaag et al. ( 1989 ) combined a joystick 85
 

tracking task with an auditory discrimination task. As the rela- 86
 

tive difficulty of the two tasks was changed, and the attention 87
 

each required changed correspondingly, the amplitudes of the 88
 

two P300s also changed. As one task became more diffi  cult and 89
 

thus required more attention, the amplitude of its P300 90
 

increased, and the amplitude of the P300 associated with the 91
 

other task decreased. These results and related studies show 92
 

that attentional allocation and task diffi  culty affect P300 ampli- 93
 

tude. They are relevant for P300-based BCIs since BCI users, 94
 

in addition to simply watching for the desired stimuli (e.g., 95
 

the letters they want to spell), are usually engaged in another 96
 

task as well (e.g., planning the message being written with 97
 

the BCI). 98
 

Another issue of particular importance for P300-based BCI 99
 

applications is the extent to which P300 amplitude and latency 100
 

change over time, both within an individual session and across 101
 

days, weeks, months, and even years. In this area the available 102
 

literature is mixed. Polich ( 1986 ) and Fabiani et al. ( 1987 ) 103
 

showed robust test/retest correlations for peak amplitude and 104
 

latency across sessions conducted within two weeks of one 105
 

another. On the other hand, Kinoshita et al. ( 1996 ) found sig- 106
 

nificant decreases in P300 amplitude when sessions were spread 107
 

over several months. A number of studies have reported that 108
 

P300 amplitude decreases during a session, and P300 latency 109
 

can display cyclical variations over several hours (Lin & Polich, 110
 

1999; Pan et al., 2000; Ravden & Polich, 1999). To a consider- 111
 

able extent, much of the variability in P300 amplitude is due to 112
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1 latency variability (i.e.,  latency jitter ). Kutas et al. (  1977) showed 
2 that changes in P300 latency from trial to trial reduce the 
3 amplitude of the averaged P300 and that adjustment for this 
4 latency variability eliminates the apparent amplitude variability. 
5 Thus, studies that focus on P300 amplitude and do not adjust 
6 for latency variability may yield misleading results. 

7 P300-BASED BCIS

8  The primary advantages of P300-based BCIs are that they are 
9 noninvasive, can be parameterized for a new user in a few min­

utes, require minimal user training, are usable by 90 %  of people 
11 (assuming ability to attend to the stimuli and to perform the 
12 classification task), can provide basic communication and con­
13 trol functions, and are relatively reliable. For these reasons, 
14 among present-day BCI systems, P300-based BCIs are the type 
15 most amenable to independent long-term home usage by 
16 people with severe disabilities. This subsection describes the 
17 initial P300-based BCI design and then reviews the ways in 
18 which this design has been modified and extended to improve 
19 or expand the communication and control it provides. 

P300-based BCIs incorporate the three essential attributes 
21 of the oddball paradigm in a way that serves the needs of a 
22 communication and control system; specifi cally: 

23 • Stimuli representing possible BCI outputs are 
24 presented in a random order. 

25 •     The stimulus representing each possible output 
26 is presented rarely (e.g., with a probability of 1/ 
27 [number of possible outputs]).

28 •     The BCI user is asked to attend to the stimulus 
29 that represents the output he or she desires (i.e., 

the  target stimulus).     

31 With a BCI protocol that has these three essential attri­
32 butes, the stimulus representing the desired BCI output (i.e., 
33 the target stimulus) becomes an oddball stimulus and thus 
34 elicits a P300 ERP. 

35 T H E  O R I G I N A L  P 3 0 0 - B A S E D  B C I  S T U D Y  

36 In 1988, Farwell and Donchin (Farwell & Donchin,  1988 ) 
37 described a P300-based spelling application, which they 
38 referred to as a mental prosthesis . Their hope was that people 
39 who were paralyzed could use it to communicate simple mes­

sages. In their first design, all the letters of the alphabet were 
41 presented one at a time on a video screen in a random order, 
42 and the subject was asked to note when the letter he or she 
43 wanted to select (i.e., the target letter) appeared. Th e target 
44 letter did elicit a P300. However, because the letters were pre­
45 sented at a rate of 1/sec, and multiple presentations of each 
46 letter had to be averaged to reliably detect the P300, several 
47 minutes were required for the subject to select just one letter. 
48 Thus, they modified the design to allow selections to be made 
49 more rapidly. In the new design, the subject viewed a 6  × 6 

matrix of letters and other commands (fig. 12–3A). Th e stimulus 

events were flashes of an entire row or column of the matrix. 51
 

they relied instead on the evidence of Posner ( 1980 ) that atten- 60
 

tion can be focused away from the gaze fi xation point. 


First the rows and then the columns flashed in random order 52
 

at rates as high as 8/sec. At this rate, the six rows and six col- 53
 

umns each flashed once in 1.5 sec. The BCI user was instructed 54
 

to attend to a given letter and to keep a running mental count 55
 

of the number of times that letter flashed. Farwell and Donchin 56
 

( 1988 ) did not ask the subject to foveate (i.e., look directly at) 57
 

the target letter. They assumed that some BCI users might not 58
 

be able to control gaze direction (e.g., due to ALS), and thus 59
 

61 

It is important to emphasize that this BCI met the require- 62
 

ments of the oddball paradigm and capitalized on its proper- 63
 

ties. The subject was presented with a random sequence of 64
 

events. The rare (or oddball) class included the flashes of the 65
 

row and the column that contained the target letter, while the 66
 

frequent class included the flashes of the other five rows and 67
 

five columns. Farwell and Donchin ( 1988 ) predicted that only 68
 

the two rare events would elicit detectable P300s and that once 69
 

this row and column were identified, the target would be the 70
 

letter at their intersection. 71
 

Figure  12–3B  shows the time course of events in the opera- 72
 

tion of this BCI. Of particular interest is the fact that the rapid 73
 

rate of stimulus presentation (e.g., every 125 msec) means that 74
 

two or even three stimuli are delivered before a P300 to the fi rst 75
 

stimulus can occur. That is, the poststimulus EEG analysis 76
 

epoch (originally 600 msec) for a given stimulus is still under 77
 

way when the next several stimulus events occur. Th us, the 78
 

analysis epoch for each stimulus overlaps those of the several 79
 

preceding and the several succeeding stimuli. The impact of 80
 

this overlap on P300 performance, and the measures that might 81
 

be taken to reduce it (e.g., slower presentation rates), are 82
 

addressed in a subsequent section. 83
 

Using EEG recorded from a single electrode (Pz; referenced 84
 

to linked ear electrodes) and a 600-msec post-stimulus analysis 85
 

epoch, Farwell and Donchin ( 1988 ) compared four diff erent 86
 

classification algorithms: stepwise linear discriminant analysis 87
 

(SWLDA); peak picking of amplitude in the 200- to 400-msec 88
 

interval; the area under the curve in the same interval; and the 89
 

covariance between the single trial data and a template repre- 90
 

senting the standard P300. It should be noted that SWLDA has 91
 

been used since the 1960s for single trial detection of the P300 92
 

(Donchin, 1969; Donchin et al., 1970; Donchin & Herning, 93
 

1975; Horst & Donchin, 1980; Squires & Donchin, 1976). In 94
 

this first P300-based BCI study, Farwell and Donchin ( 1988 ) 95
 

found that the SWLDA and peak picking algorithms provided 96
 

the highest accuracy in identifying the target stimulus (i.e., the 97
 

item the user wanted to select). They also found that accuracy 98
 

was higher for a stimulus presentation rate of 4/sec than for a 99
 

faster rate of 8/sec. As expected, more stimulus repetitions pro- 100
 

duced higher accuracy. Accuracy of 80 %  (with 2.8 %  [i.e., 1/36] 101
 

expected by chance) required 20.9 sec per selection; and 95 % 102
 

accuracy required 26.0 sec. These two options gave selection 103
 

104 

 This seminal study of 1988 demonstrated the feasibility of 
rates of about 3.0 and 2.3 per minute, respectively. 


105
 

P300-based communication. It has since served as the starting 106
 

point and the first benchmark for the many P300-based BCI 107
 

108studies that have followed.
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Figure 12.3 (A) The 6 ×  6 matrix described by Farwell and Donchin ( 1988 ). (B) The time course for a series of 12 flashes with a stimulus onset asynchrony (i.e., time 
from beginning of one flash to the beginning of the next) of 125 msec. The six columns flashed in a random order and then the six rows flashed in a random order. 
(Modified from Farwell and Donchin,  1988 .) 

1 T H E  A I M S  A N D  L I M I TAT I O N S  O F  S U B S E Q U E N T  
2 P 3 0 0 - B A S E D  B C I  S T U D I E S

3  The central goal of almost all these subsequent studies has been
 
4 to improve the speed, accuracy, capacity, and/or clinical practi-
 ing possible improvements in P300-based BCIs. 20
 

5 cality of P300-based BCIs so that they can provide important
 
22 

23 

24 

9
 

6 new communication and control options for people whose 
 yses of data previously collected. Although offl  ine analysis can 
7 severe motor disabilities prevent them from using conventional 
 enable very efficient comparison of different alternatives, it can 
8 (i.e., muscle-based) assistive communication technology.
 only predict how the alternatives  may perform in actual online 

In considering these efforts to improve the performance of
 
10 P300-based BCIs, it should be remembered that the core of
 
11 the evaluation should be the improvement that the BCI can 
 when a method is actually used online. To the extent that the 27 

28 

29 

30 

31 

12 make to the quality of life of users with severe disabilities. 
 new method changes the classifi cation, and thus the feedback 
13 In this regard, the fact that the BCI can restore a measure of
 provided to the BCI user, it may affect subsequent EEG and 
14 independent communication may be more important than the 
 thereby affect subsequent performance in ways only assessable 
15 BCI’s exact accuracy or bitrate (i.e., speed). Furthermore, it is 
 by online testing. The critical importance of online validation 

ous ones until it has been evaluated and validated in actual use 
not possible to conclude that a new design is superior to previ- 16
 

17
 

emphasized as we proceed to discuss the extensive work explor- 19
 

by people with severe disabilities. These caveats must be 18
 

Most P300-based BCI studies have focused on offl  ine anal- 21 

usage. Even with leave-one-out cross-validation, offl  ine analy- 25 

sis cannot reveal exactly how future performance may change 26 
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1	 of new methods was discussed in greater detail in chapter 8 of 
2	 this volume. In sum, while offline analysis is the workhorse of 
3	 BCI research, online testing must be considered the gold stan­
4	 dard. About 25 %  of the studies that have used offl  ine analyses 

to evaluate alternative P300-based BCI methods have also 
6	 included online validation of their results. 

7	 A LT E R N AT I V E  E L E C T R O D E  M O N TA G E S  

8	 As reviewed in Fabiani et al. ( 1987 ), P300 has traditionally 
9	 been recorded from electrodes Fz, Cz, and Pz, according to the 

10–20 electrode system (Jasper,  1958 ). Figure 12–2 shows 
11 examples of several electrode montages that have been used in 
12 P300-based BCI studies (Krusienski et al.,  2008 ). Th e original 
13 Farwell and Donchin ( 1988 ) study used only the EEG recorded 
14 from electrode Pz. Studies since then have explored other 

recording montages: three or four midline electrodes, Fz, Cz, 
16 Pz, or Oz (Piccione et al.,  2006 ; Sellers & Donchin,  2006 ; Serby 
17 et al.,  2005 ); the International 10–20 system (Citi et al.,  2008 ); 
18 a set of 10 midline and parietal/occipital electrodes (Kaper 
19 et al.,  2004 ; Lenhardt et al.,  2008 ); a set of 11 electrodes (Neshige 

et al.,  2007 ); and a set of 25 central and parietal electrodes 
21 (Thulasidas et al., 2006). 
22 Krusienski et al. ( 2008 ) compared the performances of 
23 SWLDA classification algorithms based on the EEG from: 
24 locations Fz, Pz, and Cz; locations PO7, PO8, and Oz; or all six 

of these locations. These locations are shown in figure 12–2. 
26 The algorithms that used either set of three EEG electrode 
27 locations achieved accuracies of about 65 %  on the 6x6 matrix, 
28 whereas the algorithm that used all six locations achieved an 
29 accuracy of 90 % . At the same time, they also found that 

SWLDA classification was not further improved by using a still 
31 larger set of 19 electrodes that included the original 6 elec­
32 trodes. The high performance of these six EEG electrodes in 
33 offline analyses was also confirmed in online testing. 
34  These results are supported by the results of Hoffmann et al. 

( 2008 ), who investigated the 4 midline electrodes, a set contain­
36 ing four additional parietal electrodes, as well as sets that 
37 included 16 and 32 electrodes. In general, the set using the mid­
38 line and parietal electrodes performed as well as the 16- and 
39 32-electode montages. Meinicke et al. ( 2002 ) also examined the 

effects of various numbers of electrodes on the resulting classi­
41 fi cation. They found that with one or three electrodes, 30 sec 
42 were needed to achieve 85 %  accuracy; in contrast, 7 or 10 elec­
43 trodes reached accuracy above 95 %  after 15 sec.     

44 A LT E R N AT I V E  S I G N A L - P R O C E S S I N G  M E T H O D S  

Numerous studies have evaluated and compared the perfor­
46 mances of a variety of diff erent classification algorithms, for 
47 example:  

48 • Independent components analysis (chapter 7, this 
volume) (Beverina et al.,  2003 ; Khan et al.,  2009 ; Li 
et al., 2009; Serby, et al., 2005) 

49 

51 • Support vector machines (chapter 8, this 
volume) (Beverina, et al.,  2003 ; Garrett et al.,52 
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2003; Guo et al., 2010; Hong, Guo, et al., 2009;
 53 

Hong, Lou, et al.,  2009 ; Kaper, et al.,  2004 ;
 54 

Krusienski et al., 2006; Lal et al., 2004; Lenhardt
 55 

et al.,  2008 ; Lima et al.,  2010 ; Meinicke, et al., 56 

572002; Olson et al., 2005; Qin et al., 2007; Salvaris
 
& Sepulveda, 2009; Salvaris & Sepulveda, 2007;
 58 

Serby et al., 2005; Thulasidas et al., 2006) 59 

• 	     Stepwise linear discriminant analysis (SWLDA) 60
 

61(see chapter 8, this volume) (Bianchi et al.,  2010 ;
 
Brouwer & van Erp, 2010 ; Dias et al.,  2007 ;
 62
 

Garrett et al., 2003; Hoffmann et al., 2008; 63
 

Krusienski et al., 2006; Nijboer et al., 2008; 64
 

Sellers & Donchin, 2006; Sellers et al., 2006; 65
 

Townsend et al., 2010) 66
 

• 	 Fisher’s linear discriminant (see chapter 8, this 67
 

volume) (Babiloni et al.,  2001 ; Gutierrez & 68
 

Escalona-Vargas, 2010; Hoffmann, et al., 2008; 69
 

Nazarpour et al.,  2009 ; Salvaris & Sepulveda, 70
 

2009 , 2010) 71
 

In an extensive offline analysis, Krusienski et al. ( 2006 ) com- 72
 

pared classification by SWLDA, linear support vector machines, 73
 

Gaussian support vector machines, Pearson’s correlation 74
 

method, and Fisher’s linear discriminant analysis. Although all 75
 

five methods performed reasonably well, the SWLDA and 76
 

Fisher’s linear discriminant methods were signifi cantly better 77
 

than the other three (approximately 88 %  accuracy vs. 80–83 % 78
 

accuracy). Meinicke et al. ( 2002 ) also compared three diff erent 79
 

classification methods: area; peak picking; and SVMs. Th ey used 80
 

electrode Pz and showed that the SVM solution reached about 81
 

78 %  accuracy in 30 sec, whereas the area and peak picking 82
 

methods reached about 78 %  accuracy in 1 min. 83
 

In addition to the kinds of studies described above, several 84
 

Internet-based BCI data competitions (e.g., Blankertz,  2005 ; 85
 

Blankertz et al.,  2004 ; Blankertz et al.,  2006 ; Bradshaw et al., 86
 

2001; Rakotomamonjy & Guigue, 2008) have motivated many 87
 

research groups from all over the world to try to develop better 88
 

P300-based BCI algorithms. Although a number of the new 89
 

algorithms may achieve small improvements in performance, 90
 

the overall result of now fairly extensive studies is that various 91
 

signal-processing methods, when properly employed, provide 92
 

roughly similar performance in offline analyses. At the same 93
 

time, some algorithms are likely to be easier than others to use 94
 

in online applications. Taken as a whole, these studies suggest 95
 

that individual differences among BCI users may be a more 96
 

critical determinant of performance than the exact choice of 97
 

classification algorithm, provided that the algorithm is prop- 98
 

erly parameterized (see chapter 8, this volume). Th is overall 99
 

result implies that major improvements in the current perfor- 100
 

mance of P300-based BCIs are likely to come from other kinds 101
 

102of changes, as addressed in subsequent subsections. 


A LT E R N AT I V E  S T I M U L I  A N D  S T I M U L U S 
  103 

P R E S E N TAT I O N  PA R A M E T E R S 
  104 

A number of studies have focused on the standard visual matrix 105
 

with row/column presentation and explored the impact of 106
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1 variations in basic parameters such as item size and number, 
2 the rapidity of row/column fl ashing, flash duration, and the 
3 number of repetitions per selection (Salvaris & Sepulveda, 
4 2009; Sellers et al., 2006). 


For example, Sellers et al. ( 2006 ) compared two diff erent 
6 values of stimulus onset asynchrony (i.e., the time from 
7 the beginning of one stimulus to the beginning of the next), 
8 175 msec and 350 msec, as well as two different matrices (3  × 3 

9 and 6  ×  6). In contrast to the findings of Farwell and Donchin 

( 1988 ), but consistent with the findings of Meinicke et al. 
11 ( 2002 ), they found that the higher stimulus rate yielded higher 
12 classification accuracy regardless of whether the conditions 
13 were matched for the number of stimulus presentations or the 
14 time per selection was held constant. In addition, P300 ampli­

tude was larger with the 6  ×  6 matrix than with the 3  ×  3 matrix. 
16 This is consistent with the many studies showing that P300 
17 amplitude is inversely related to target probability (e.g., Allison 
18 & Pineda, 2003 , 2006; Duncan-Johnson & Donchin, 1977). On 
19 the other hand, Guger et al. (2009) compared the 6  ×  6 matrix 

format to a single-item presentation format. Although P300 
21 amplitude was higher with the single-item format, the matrix 
22 format yielded higher accuracy and higher bit rate (chapter 8, 
23 in this volume). 
24 Using the Farwell and Donchin matrix format, other stud­

ies have explored other variations in the presentation. Takano 
26 et al. ( 2009 ) varied the contrast between the stimuli and the 
27 background. They compared a white/gray pattern (luminance 
28 condition); a green/blue isoluminance pattern (color condi­
29 tion); and a green/blue luminance pattern (luminance/color 

condition). In online testing the third condition (luminance/ 
31 color) provided higher accuracy. Salvaris and Sepulveda ( 2009 ) 
32 varied the item/background colors, the item size, and the dis­
33 tance between items. Although a white background yielded the 
34 best performance, and small items yielded the lowest perfor­

mance, no single option was best for all subjects. 
36 Perhaps the most important practical implication of these 
37 and other studies of basic format parameters is that the optimal 
38 parameter settings vary across users, and thus they should be 
39 optimized for each new BCI user (Sellers & Donchin,  2006 ). 

Other researchers have explored modifications in the 
41 nature of the visual stimulus. In an effort to reduce the impact 
42 of the overlapping analysis epochs associated with rapid stimu­
43 lus presentation rates, Martens et al. ( 2009 ) tested an apparent­
44 motion paradigm in which the matrix items were in rectangles 

and the stimulus was a sudden 90 °  rotation of the rectangle. 
46 The user’s task was to count the number of times the rectangle 
47 containing the desired item rotated. This paradigm showed a 
48 statistical improvement in performance for two of six subjects. 
49 In a similar effort, Hong et al. ( 2009 ) explored a stimulus 

designed to elicit a motion-specific ERP component (i.e., 
51 N200) that is most prominent at parietal electrodes P3 and P7. 
52 Although offline analyses found performance similar to that of 
53 the standard P300-based BCI format, the results suggested that 
54 the new design might reduce the number of scalp electrodes 

needed. 
Several studies have addressed two problems associated 

57 with the row/column stimulation format. First, the desired 
58 item (i.e., the target stimulus) will sometimes flash twice in 

56
 

succession (once as part of a column and once as part of a row). 59
 

As a result, the P300 ERP evoked by the second flash is likely to 60
 

be attenuated (Squires et al.,  1976 ); and, because their analysis 61
 

epochs overlap, the two ERPs may distort each other (Martens 62
 

et al., 2009; Woldorff,  1993 ). Furthermore, depending on the 63
 

subject and particularly with higher stimulus-presentation 64
 

rates, the subject may not even notice the second flash of the 65
 

target. Another problem is that, with the row-column format, 66
 

it is the target’s row or column, not the target alone, that evokes 67
 

the P300 ERP. As a result, although items not in the target’s row 68
 

or column are seldom selected by mistake, items that are in the 69
 

target’s row or column are selected by mistake much more 70
 

often (Donchin et al., 2000; Fazel-Rezai,  2007). 71
 

To address these two problems, Townsend et al. ( 2010 ) 72
 

developed a format in which groups of items (e.g., six items 73
 

from an 8  ×  9 matrix of alphanumeric symbols and commands) 74
 

were presented simultaneously. The groups were selected to 75
 

satisfy two constraints. First, no item could be presented a 76
 

second time until at least six intervening groups of fl ashes had 77
 

occurred. Second, two adjacent items were never presented at 78
 

the same time. Th is checkerboard presentation format elimi- 79
 

nated the two problems of successive target presentations and 80
 

adjacent item presentations. In an online comparison in 18 81
 

subjects that took into account the need to correct for any 82
 

errors that occurred, the checkerboard format performed sig- 83
 

nificantly better than the standard row/column format. In 84
 

addition, most users, including several people with ALS, 85
 

reported that they liked the checkerboard format better. 86
 

Further explorations of alternative presentation formats are 87
 

likely to produce further improvements. 88
 

T H E  P O S S I B L E  R O L E  O F  G A Z E  D I R E C T I O N  89
 

I N  P 3 0 0 - B A S E D  B C I  P E R F O R M A N C E  90
 

As described above, the P300 is evoked by stimuli of special 91
 

significance. In the case of P300-based BCIs, the special sig- 92
 

nificance is that the stimulus represents the BCI output desired 93
 

by the user. Thus, P300 elicitation does not require that the 94
 

user look directly at (i.e., fixate) the stimulus, and P300-based 95
 

BCIs should be usable by people with limited or even absent 96
 

eye movements, such as many of those with late-stage ALS. 97
 

At the same time, some recent evidence suggests that the 98
 

performance of P300-based BCIs that use a matrix format 99
 

may depend to some extent on the user’s ability to fi xate the 100
 

desired item. 101
 

 Brunner et al. (2010) and Treder and Blankertz (  2010) 102
 

compared P300-based BCI performance when the user fi xated 103
 

a central point to that when the user fixated the target. In both 104
 

studies, performance was better when the user fi xated the 105
 

target. However, as noted previously, it is well established that 106
 

the P300 amplitude is decreased when the subject is assigned a 107
 

second task (Donchin, 1987b; Fowler, 1994; Gopher, 1986; 108
 

Kramer et al., 1986; Kramer et al., 1983; Kramer et al., 1985; 109
 

Sirevaag et al., 1989; Wickens et al., 1983; Wickens et al.,  1984). 110
 

By asking that the subject fixate a point other than the target 111
 

during BCI use, Brunner et al ( 2010 ) and Treder and Blankertz 112
 

( 2010 ) essentially imposed a second task. Thus, although accu- 113
 

racy was significantly higher in the fixate condition, it is not 114
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(e.g., P100 and N200 see The Oddball Paradigm above), in 

29 usefulness of P300-based BCIs are not clear. Whereas P300­
based BCI performance may depend to some degree on the 

31 user’s ability to look directly at the desired item, the impor­
32 tance of this factor in determining the usefulness of these BCIs 
33 for people with eye-movement impairments remains to be 
34 determined. In this regard it is relevant to note that one person 

with ALS who could no longer use his eye-tracker communi­
36 cation device was able to use a P300-based BCI very eff ectively 
37 (Sellers et al.,  2010 ). In a more general sense, it should be 
38 appreciated that the performance of any BCI that depends on 
39 the user’s vision is likely to be affected by loss of eye-movement 

control. For example, a sensorimotor-rhythm-based BCI (see 
41 chapter 13, this volume) that controls cursor movement is 
42 likely to perform less well when the user’s gaze cannot follow 
43 the moving cursor. This practical reality brings us to the next 
44 section.     

P 3 0 0 - B A S E D  B C I S  T H AT  U S E  A U D I T O RY  
46 S T I M U L I  

47 Many of the people who need the basic communication capac­
48 ity that a P300-based BCI could provide may find it impracti­
49 cal or impossible to use a system that requires vision. For 

example, in addition to weak eye-movement control, people 
51 with advanced ALS may have visual difficulties due to diplopia 
52 (double vision), ptosis (drooping eyelids), or dry eyes. In 
53 response to this problem, several research groups have begun 
54 developing P300-based BCIs that use auditory stimuli instead 

of, or in addition to, visual stimuli (Hill,  2005 ; Nijboer et al., 
56 2008; Pham et al., 2005). The major limitation of these 

1 surprising that the gaze requirement yielded lower P300 ampli­
2 tude and reduced accuracy. Although Brunner et al. ( 2010 ) 
3 conclude that the higher classification accuracy in the fi xate 
4 condition indicates that P300-based BCI performance depends 

on the subject’s ability to fixate the target character, it is evident 
6 from their results that classification does not require fi xation. 
7 Moreover, using a paradigm similar to that of Treder and 
8 Blankertz (  2010), Liu et al. (2010) reported mean accuracy 
9 higher than 96 %  for a covert attention task. These results dem­

onstrate that optimizing the presentation paradigm can yield 
11 highly accurate results even when the subject does not fi xate 
12 the target. 
13 Nearly all P300-based BCI studies since 2004 have incor­
14 porated relatively short-latency (e.g., 150–250 msec) features 

recorded from occipital scalp locations (i.e., over visual cortex). 
16 The clear value of such early-latency posterior scalp features 
17 suggests that the responses elicited by the matrix P300-based 
18 BCI, and the accuracy of the classification they achieve, may 
19 depend to some degree on occipital visual evoked potentials 

21 addition to the P300. On the other hand, it should be noted 
22 that occipital VEP components are affected by attention (Eason, 
23 1981; Harter et al., 1982; Hillyard & Munte,  1984; Mangun 
24 et al.,  1993 ). It has also been noted that P300-related activity 

occurring in the temporal-parietal cortical junction may con­
26 tribute to the EEG recorded from occipital electrodes (Dien 
27 et al., 2003; Polich, 2007). 
28  The practical implications of these results for the clinical 

paradigms is the low number of possible selections (e.g., two or 57
 

four) compared to the much higher number available with 58
 

standard visual P300-based BCIs (e.g., 6  ×  6 = 36). Th us, the 59
 

rate of communication is necessarily slow. Nevertheless it 60
 

might still be extremely valuable for people who lack other 61
 

eff ective options. 
 62 

In an effort to improve the bitrate, several studies have pre- 63
 

sented auditory stimuli that map onto a visual matrix. Furdea 64
 

et al. ( 2009 ) used a 5  ×  5 visual matrix in one condition, and a 65
 

5 ×  5 auditory (i.e., the spoken words “one” to “ten”) and visual 66
 

matrix in another condition. The auditory stimuli mapped to 67
 

the five rows and five columns of the matrix, which were 68
 

labeled 1–10. Nine of 13 subjects were able to use the auditory 69
 

and visual matrix with accuracy of 70 %  or higher. In contrast, 70
 

all 13 subjects achieved accuracy of 75 %  or higher in the visual 71
 

condition, and 11 of the 13 were above 95 % . In a similar design, 72
 

Klobassa et al. ( 2009 ) used a 6  ×  6 matrix and presented envi- 73
 

ronmental sounds that correspond to the rows and columns. 74
 

This study showed that subjects were eventually able to use the 75
 

system with the auditory stimuli alone. However, the commu- 76
 

nication rates were still relatively low next to those of visual 77
 

P300-based BCIs. 78
 

 These early studies have established the feasibility of audi- 79
 

tory P300-based BCIs. This achievement, combined with the 80
 

clinical need for such systems, should encourage their further 81
 

development.     82
 

P R O S P E C T S  F O R  I M P R O V I N G  83
 

P 3 0 0 - B A S E D  B C I S 84
 

Current P300-based BCI designs provide relatively modest 85
 

rates of communication. Many research groups are working to 86
 

improve P300-based BCIs by exploring new electrode selec- 87
 

tion methods, presentation paradigms, and applications. 88
 

Cecotti et al. ( 2011 ) introduced a new electrode selection 89
 

algorithm to reduce the number of electrodes necessary for a 90
 

given person to use a P300-based BCI. Electrode selection, 91
 

more specifically reduction, will be a valuable asset in terms of 92
 

cost, convenience, and portability as more people begin to use 93
 

BCIs. In theory, a small number of electrodes should be suffi- 94
 

cient for P300-based control; however, due to individual diff er- 95
 

ences, it may be advantageous to start with a somewhat larger 96
 

array and then prune it to as few electrodes as possible. 97
 

Other studies have explored variations in contrast and 98
 

color (Salvaris & Sepulveda,  2009 ; Takano et al.,  2009 ), over- 99
 

lapping stimuli and apparent (Martens et al.,  2009 ) or actual 100
 

(Hong et al.,  2009 ) motion, stimulus presentation modifi ca- 101
 

tions (Jin et al.,  2011 ; Townsend et al.,  2010 ), suppressing char- 102
 

acters that surround the target during calibration (Frye et al., 103
 

in press), and using mindfulness induction to increase atten- 104
 

tional resources (Lakey et al., in press). Schreuder et al. ( 2010 ) 105
 

designed a fi ve-choice auditory BCI by giving each stimulus a 106
 

unique tone and a unique spatial location. The study showed 107
 

that the system produced speed and accuracy comparable to 108
 

some visual P300-based BCIs. Brouwer and van Erp ( 2010 ) 109
 

showed that a tactile P300-based BCI using stimulating elec- 110
 

trodes placed around the waist can achieve speed and accuracy 111
 

112similar to that of most auditory BCIs. 
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New applications are also emerging. For example, 
2	 Mussinger et al. ( 2010 ) showed that a P300-based BCI can be 
3	 used as a creative tool as well as a communication device. 
4	 Subjects performed copy-spelling, copy-painting, and free-

painting tasks. We have seen advances toward a P300-based 
6	 Internet browser (Bensch et al.,  2007 ; Mugler et al.,  2008 ; 
7	 Mugler et al.,  2010 ) and also how a predictive spelling program 
8	 can increase throughput (Ryan et al., 2011). 

1
 

9	 I N D E P E N D E N T  H O M E  U S E  O F 
  
P 3 0 0 - B A S E D  B C I S
 

11 Because P300-based BCI systems are noninvasive, relatively 
12 portable and inexpensive, and perform reliably, they are the 
13 first BCIs being taken out of the laboratory and used indepen­
14 dently by severely disabled people in their daily lives for basic 

communication and environmental control. Although the fi rst 

16 report of in-home testing is provided in Farwell and Donchin 

17 (1988), the concept was first described earlier by Donchin in a 

18 1985 lecture (see Donchin,  1987a , for a transcript of the lec­
19 ture). Birbaumer et al. (1999) reported the fi rst long-term 


home usage of a BCI system by a man with ALS. However, it is 
21 only recently that a larger-scale effort to implement home use 
22 independent of close oversight by a research team has begun 
23 (Sellers et al.,  2010 ; Vaughan et al.,  2006 ). Even though the 
24 system is slow compared to conventional means of communi­

cation, it should be noted that, for severally disabled users, 
26 communication speed is often less important than accuracy 
27 and reliability and the fact that the BCI restores a measure of 
28 independence (Kubler & Neumann,  2005 ; Nijboer et al.,  2008 ; 
29 Sellers & Donchin,  2006 ) (although most BCI users would pre­

sumably opt for faster communication if it were available). 
31  Th ese fi rst efforts have encountered, described, and begun 
32 to address the myriad difficult issues that arise when a new 
33 technology is taken out of the simple, highly controlled labora­
34 tory environment and placed into the complex, changing, and 

unpredictable environments in which people, including those 
36 with severe disabilities, actually live. These issues include (but 
37 are certainly not limited to) the capacities, expectations, and 
38 desires of the prospective users and their caregivers; the need 
39 for extremely simple and robust hardware and software and for 

simple and convenient usage procedures; the diffi  culty of eval­
41 uating prospective users who currently can communicate very 
42 little if at all; the impact of the user’s disease process on P300 
43 generation; the selection of the proper point in the disease pro­
44 cess to introduce BCI usage; the physical and mental state of 

the user; the physical and social features and stability of the 
46 home environment; the presence of electromagnetic noise or 
47 instability; the need for prompt and effective technical support; 
48 the impact of other illnesses; and the practical and ethical 
49 issues that arise if and when disease progression degrades BCI 

performance. These many issues are addressed more fully in 
51 chapters 20 and 24 of this volume. Indeed, although the subject 
52 of chapter 20 is the clinical usage of BCIs in general, its sub­
53 stance is of necessity drawn almost entirely from experience  
54 with P300-based BCIs. 

One issue important for home use is addressed here because 
56 it applies to P300-based systems specifi cally. That issue is the 

extent to which long-term intensive home use (i.e., many hours 57
 

per day over months and years) will degrade performance. Th e 58
 

amplitude, form, or stability of the P300 might conceivably 59
 

degrade over the hours of use within a day and/or over many 60
 

days and weeks of use. For example, habituation, or decreased 61
 

amplitude with repeated stimulus presentation, occurs with 62
 

many ERP phenomena (Kinoshita et al.,  1996 ; Ravden & 63
 

Polich, 1998 , 1999). The initial results for P300-based BCI use 64
 

are encouraging. Sellers and Donchin ( 2006 ) showed reliable 65
 

use of the P300-based BCI by six people, three with ALS, over 66
 

a period of 10 weeks. Most notably, despite frequent lengthy 67
 

daily use over 3 years, P300-based BCI performance by a 68
 

person with ALS did not deteriorate (Sellers et al.,  2010 ). Th e 69
 

amplitude and form of the target and nontarget ERPs remained 70
 

stable. Furthermore, even though the SWLDA algorithm was 71
 

reparameterized periodically, the optimal parameters changed 72
 

very little over time. 73
 

One important finding from efforts to provide the P300- 74
 

based BCI to people who are very severely disabled is that it is 75
 

useful to conduct an initial test of the extent to which the 76
 

person can generate a P300 in the simplest and most straight- 77
 

forward form of the oddball paradigm, such as a protocol in 78
 

which a succession of two pictures (e.g., a zebra or an elephant) 79
 

are presented, with one appearing 80 %  of the time and the 80
 

other 20 % . If the rare event fails to elicit a P300, it is very 81
 

unlikely that the person will be able to use a visual P300-based 82
 

BCI. A recent innovation is the development of a screening 83
 

method to evaluate more thoroughly within a few sessions 84
 

whether a severely disabled person has the ability to use the 85
 

P300-based BCI (McCane et al., 2009). 86
 

SUMMARY	 87 

An event-related potential (ERP) is a distinctive pattern of volt- 88
 

age changes that is time-locked to a specific event. Th e most 89
 

prominent ERP BCI is the P300-based BCI. The P300 is a pos- 90
 

itive potential that occurs over central-parietal scalp 250–700 91
 

msec after a rare event occurs in the context of the  oddball 92
 

paradigm. This paradigm has three essential attributes: 93
 

• 	 A subject is presented with a series of events (i.e., 94
 

stimuli), each of which falls into one of two classes. 95
 

• 	     The events that fall into one of the classes are less 96
 

frequent than those that fall into the other class. 97
 

• 	     The subject performs a task that requires 98
 

classifying each event into one of the two 99
 

classes.     100
 

In 1988, Farwell and Donchin described a BCI based on 101
 

the oddball paradigm. The rows and columns of a 6  ×  6 matrix 102
 

of letters and commands flashed rapidly, and the target events 103
 

were the row and column that contained the item the subject 104
 

wanted to select. This P300-based BCI provided relatively slow 105
 

but eff ective communication. 
 106
 

Over the past two decades, the original P300-based BCI 107
 

design has provided a robust basis for continued development 108
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