A Novel Dry Electrode for Brain-Computer Interface
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Abstract. A brain-computer interface is a device that uses signals recorded from the
brain to directly control a computer. In the last few years, P300-based brain-
computer interfaces (BCIs) have proven an effective and reliable means of
communication for people with severe motor disabilities such as amyotrophic lateral
sclerosis (ALS). Despite this fact, relatively few individuals have benefited from
currently available BCI technology. Independent BCI use requires easily acquired,
good-quality electroencephalographic (EEG) signals maintained over long periods in
less-than-ideal electrical environments. Conventional, wet-sensor, electrodes require
careful application. Faulty or inadequate preparation, noisy environments, or gel
evaporation can result in poor signal quality. Poor signal quality produces poor user
performance, system downtime, and user and caregiver frustration. This study
demonstrates that a hybrid dry electrode sensor array (HESA) performs as well as
traditional wet electrodes and may help propel BCI technology to a widely accepted
alternative mode of communication.
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1 Introduction

Severe motor disabilities such as amyotrophic lateral sclerosis can reduce or eliminate
neuromuscular control and deprive affected people of communication that is vital to their
mental and physical health. Recent advances in noninvasive EEG-based brain-computer
interfaces (BCls) have given these patients new hope for communication and control of
their environment [1], [2], [3], [4], [5], [6], [7]. BCIs can succeed where other devices
fail because they use a control technology that depends directly on neuronal signals
without any requirement for neuromuscular control [8]. In the last few years, the P300-
based BCI has proven to be an effective and reliable means of communication for
severely disabled individuals. However, limitations in the duration of each use, the need
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for extensive caregiver support and training, and technical support from trained
researchers have made providing the technology to more than a few individuals
impractical. An obvious impediment to widespread acceptance of BCI technology is the
need for an improved wet electrolyte-based EEG sensor [9], or a dry sensor. The current
study provides data showing that a hybrid dry electrode array (HESA) can perform as
well as a standard wet electrode array (WEA) in a P300-based BCI paradigm. HESA
sensors have been tested in a variety of contexts and have been shown to record EEG
signals with high fidelity [10], [11]. The hybrid sensors can be applied with light,
comfortable pressure of approximately 2 psi and record EEG for practically unlimited
times without the need for electrolytes or skin treatments of any kind.

The P300 component of the event-related potential (ERP) is a large, vertex-positive
component with a latency of about 300 ms after a triggering event. It was discovered
more than 40 years ago [12], and after intensive research the robust nature of the
component has been well established [13], [14], [15]. A P300 is generated when a human
observer detects a rare or meaningful event, especially among a series of other, more
frequent events [16]. A stimulus presentation typically used to elicit a P300 is called the
oddball paradigm. To qualify as an oddball paradigm the presentation must meet three
requirements. First, the stimuli must be presented in a random order. Second, the subject
must attend to the presentation sequence. Third, one category must be presented
infrequently. The P300 Speller meets these criteria because the rows and columns of the
matrix flash randomly, the subject attends to one specific matrix character, and the
attended character flashes one out of every six flashes.

The use of the P300 response for BCI control has been well documented [2], [17],
[18], [19], [20], [21], [22]. The matrix speller version of the P300-based BCI flashes
rows and columns of letters and numbers in rapid succession. Each flash of a row or a
column is one stimulus. For a 6 x 6 alphanumeric matrix (Figure 1), each character
flashes in only one of six rows, and in only one of six columns. The user is instructed to
attend to only one character while it flashes in the matrix. This is the target character.
Thus, two of 12 stimuli are targets and 10 of 12 stimuli are non-targets. A P300 response
is produced when either the row or column containing the target item flashes. This
sequence of flashing rows and columns is repeated a number of times. The BCI system
recognizes the user’s selection by detecting and averaging the P300 responses. Averaging
is required as the P300 signal is smaller than the other components of the typical brain
signal. Thus, improvements in signal recording and/or signal processing methods should
increase the overall speed and accuracy of the P300-based BCI.



DOG (D)
D

Fig. 1. An example of a 6x6 speller matrix configured for copy-spelling. At the top, the word
DOG is presented. The letter in parentheses (D) is the current target letter. As rows and columns
flash successively, the user is asked to count how many times the letter D (the target) flashes. This
twelve-flash series is repeated a predetermined number of times. The responses for each row and
column are averaged, and a classifier is applied. The intersection of the row and column with the
highest classification values is selected. In this case, the target letter D flashing in either a column
or a row elicits a P300 response and the a D is presented as feedback to the user on the line below
the presented word DOG at the top of the matrix.

2 Methods

2.1 Hybrid EEG Sensor Technology

Measurement of the EEG for everyday use of a BCI requires the application of sensors
through thicknesses of hair. To meet this requirement, QUASAR has developed a novel
hybrid biosensor (Figure 2). This sensor measures EEG through hair and without any



skin preparation. To accomplish this, the sensor uses a set of ‘fingers’ that are small
enough to reach through the hair without trapping hair beneath the finger. Figure 3 shows
the hybrid electrodes mounted in a headpiece along with the conventional wet electrodes.

In contrast to conventional EEG electrode technology, which relies on a low
impedance contact to the scalp, these hybrid biosensors use a combination of high
impedance resistive and capacitive contact to the scalp, and innovative processing
electronics to reduce pickup and susceptibility to common-mode signals on the body. The
hybrid biosensor consists of an electrode, an ultra-high input impedance amplifier circuit,
a common-mode follower (CMF; a proprietary technology for reducing common mode
signals), and a wireless node that contains a gain/filter module and a data
acquisition/communications module. As the contact impedance between the scalp and
each finger can be as high 10’Q, the amplifier electronics are shielded and integrated with
the electrode in order to limit interference caused by the pickup of external signals. The
hybrid sensors and wireless node data acquisition channels are closely phase and gain
matched and can provide individual EEG signals or high common-mode rejection ratio
difference signals (CMRR > 70dB between 1Hz — 50Hz) between biosensors.

Fig. 2. A) QUASAR hybrid EEG biosensor used in the current study. B) The sensor and housing
with padding to fit the sensor into the headpiece.

The CMF is used to reduce the sensitivity of the hybrid biosensor to common mode
signals on the body. The CMF is a separate hybrid biosensor on or near the scalp that
measures the potential of the body relative to the ground of the amplifier system. Ultra-
high input impedance for the CMF (~10'* Q) ensures that the output of the CMF tracks the
body-ground potential with a high degree of accuracy. The CMF output is used in the
wireless node as a reference for the EEG measurement by the electrodes. In this way, the



common-mode signal appearing on the body is dynamically removed from the EEG
measurement. This typically achieves a CMRR of 50 to 70 dB.

2.2 Data Acquisition and Processing

The HESA and WEA sensors were mounted in the headpiece shown in Figure 3. Each
array had four sensors or electrodes (Cz, Pz, PO7, POS8) and one reference sensor or
electrode located on the right mastoid. The WEA had a ground electrode located on the
left mastoid. The HESA had a biosensor reference on the right mastoid and common-
mode follower on the left mastoid. The EEG signals were acquired, digitized at a rate of
256 Hz, digitally bandpass filtered 0.5-30, and stored using a g.USBamp. The HESA
samples were buffered at the sensor by a trans-conductance amplifier with ultra high
impedance, calibrated to provide data samples for the software in the same voltage range
as those of the WEA, then digitized by the g.USBamp. Thus, four WEA channels and
four HESA channels were simultaneously recorded. All aspects of data collection and
experimental control will be performed by the BCI2000 system [23].

Fig. 3. Headpiece used to make simultaneous HESA and WEA electrode comparison
measurements. Spring loaded clamps on the elastic pieces made for quick and convenient
adjustment for head size and sensor loading. The smaller electrodes on the left (right panel) are the
WEA electrodes, and the larger disk to the right is the HESA electrode.



2.3 Task, Procedure, Design, and Analysis

Participants sat in a reclining chair approximately 1.5 m from a CRT video monitor
that presented the P300 spelling matrix (Figure 1), all were able-bodied. In each
experimental session, the participant was asked to focus on each letter in the words
“Wadsworth brain computer interface” between each word of the phrase a 1-min break
was given. As Figure 1 illustrates, each word in the phrase appeared in sequence on the
top line above the matrix. The participant was instructed to attend to the letter indicated
with parenthesis while it flashed in the matrix and to silently count the number of times it
flashed. Each row and column was flashed 15 times. Thus, the selected letter flashed 30
times out of 180 total flashes. The data collected during the first two words was used to
train the SWLDA classifier (described in [20] and [24]). That classifier was then applied
to the second two words. Thus, the training data set included 14 character presentations
and the test data set included 17 character presentations.

The duration of each experimental session was approximately 30 minutes. Eight
participants completed one session that concurrently recorded HESA and WEA data.
Classification accuracy was the dependent variable used to examine system performance.
We also compared the event-related potential data for the participants.

3 Results

The event-related potentials were similar for the HESA and WEA sensors. Figure 4
shows averaged waveforms for data collected concurrently from the HESA and WEA
electrodes. It is reasonable to expect slight variability in the waveforms because the
HESA and WEA sensors were located approximately 1.5 cm away from each other,
center-to-center distance. The average signal strength for each sensor and each subject
was also calculated. To calculate this quantity, the data from each electrode are plotted on
a histogram (x-axis Signal, y-axis Number of Events at each voltage). Mean amplitude
Vrms is then read to include 90% of the points. This gives a quantity that represents the
amplitude that captures 90% of all the signals recorded. The mean rms amplitude for all
subject’s EEG was 9.10uV for the HESA sensor and 9.17uV for the WEA sensor. Thus,
the wet and dry sensors variability is near identical, to be expected of sensors of equal
fidelity measuring a common EEG signal.
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Fig. 4. Averaged ERP waveforms for target items (solid line) and non-target items (all other rows
and columns) are graphed as a function of time after the flash, with positive voltage downward.
The periodic signal in the non-target waveform corresponds to the frequency the flashes. These
data are averaged across all trials in a session in which HESA and wet data was recorded
concurrently for one representative participant.

Mean percent correct classification accuracy for each of the eight participants is shown
in Table 1. Overall, the classification accuracy was similar for the HESA and the WEA
arrays when the EEG was collected in side-by-side concurrent recordings (paired t-test;
p=-50). These initial results demonstrate the efficacy of the HESA system and provide
confirmation that a HESA-based BCI system can perform as well as a wet electrode-based
BCI system, when proper care is taken to ensure signal quality.

Table 1. Mean classification accuracy for each participant.

Participant HESA % correct WEA % correct

A 29 29
B 76 94
C 82 76
D 12 18
E 65 47
F 94 100
G 82 100
H 100 100
Mean 67.5 70.5




4 Discussion and Conclusions

These data show that the HESA and WEA sensors provide equivalent BCI classification
accuracy while participants perform a copy spelling task, in a preliminary data set. In
addition, the signal fidelity of the two EEG recording methods is very similar (as
measured by root mean square and the event-related potentials). This initial success
suggests that dry sensor technology may provide a more user friendly and more
acceptable implementation of a P300-based BCI.

One common complaint among able-bodied and disabled BCI users is the necessity of
the electrolyte based gel that needs to be washed out of the hair after each session.
Obviously, the need to wash the hair is eliminated with HESA sensors and this can
substantially reduce the burden associated with BCI use for the BCI user and also for the
person assisting the BCI user. It is also not necessary to abrade the scalp when using the
HESA sensors which makes them more comfortable to wear. Future work will focus on
testing the HESA with a larger group of subjects who will participate in multiple
experimental sessions and on developing a mounting system that can be comfortable to
wear for severely disabled individuals who may be limited to a prone position.
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