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Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a
new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2),
has resulted in global healthcare crises. Emerging evidence from patients with COVID-19
suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and
could be a major contributor to the severity and mortality of COVID-19. Like other
infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic
processes. Lactate, a potential biomarker in COVID-19, has recently been shown to
mediate endothelial barrier dysfunction. In this review, we provide an overview of
cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We
also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.

Keywords: COVID-19, aerobic glycolytic metabolism, lactate, endothelial cell, cardiovascular dysfunction, HMGB1
(High mobility group box 1), thrombosis, vascular permeability
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is defined as an infectious respiratory disease propagated by
a new virus labeled the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-
19 was first identified in Wuhan, China in November of 2019 and has become a global health threat
affecting more than 200 million people with a mortality rate of 2.3% due to its high contagiousness
and lack of specific antiviral treatments (1). There are excellent reviews and articles on the clinical
manifestation, hematology laboratory, and management of COVID-19 patients (1–3). By
November 2021, over twenty COVID-19 vaccines have been approved in different parts of the
world (4). Despite the COVID-19 vaccine, which has been quickly and successfully developed and
employed to fight against the COVID-19 infection, the exact mechanisms by which the SARS-CoV-
2 significantly causes dysfunction of several systems, including respiratory system, nerve system,
and cardiovascular system have not been elucidated entirely.

Emerging clinical data has shown that the COVID-19 patients with cardiovascular diseases
(CVDs) have a greater mortality (11%) than in total case mortality (2.3%) (5). On the other hand,
COVID-19 infected patients exhibit cardiovascular disorders and heart attack symptoms (6–8). This
evidence suggests that SARS-CoV-2 infection could cause cardiovascular dysfunction which is a
org March 2022 | Volume 13 | Article 8686791
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major factor contributing to the mortality of a substantial
proportion of the patients with severe COVID-19 infection.
Importantly, the symptoms of severe COVID-19 infected
patients resemble the clinical features of endothelial
dysfunction (8, 9), indicating that SARS-CoV-2 could cause
the endothelium damage. Indeed, electron microscopy analysis
of post-mortem tissues showed that SARS-CoV-2 could infect
pulmonary endothelial cells and induce endotheliitis in COVID-
19 infected patients who are critically ill (9). In addition, SARS-
CoV-2 could directly infect endothelial cells via angiotensin-
converting enzyme 2 (ACE2), subsequently alter the vascular
homeostasis, and induce clinical manifestations such as acute
respiratory distress syndrome (ARDS) (9–11).

Recent studies highlight the role of metabolisms in the
regulation of innate immune and inflammatory responses (12–
15). Metabolic reprograming plays a critical role in innate
immune and inflammatory responses (16). Severe COVID-19
infected patients usually exhibit the “cytokine storm”, indicating
that the metabolisms in these patients have been altered. It is
possible that aerobic glycolytic metabolism could be involved in
the pathogenesis of the COVID-19 infection that induces severe
conditions in those who are infected (17). Importantly, aerobic
glycolytic metabolism not only regulates innate immune
response (12), but also modulates endothelial cell function (14,
18). Generally, virus infections activate several immune cell
types, such as dendritic cells, neutrophils and macrophages to
produce pro-inflammatory cytokines that fight against virus
invasions and maintain the tissues’ homeostasis (19). This
process requires a rapid energy production to provide fuel for
immune cell proliferation and inflammation (20). Recent
evidence has shown that aerobic glycolytic metabolism and
subsequent lactate production can be considered as an integral
part of cellular signaling (12–14, 21). Furthermore, more recent
findings in immunometabolism show that aerobic glycolysis can
be a metabolic choice of immune cells and the function of aerobic
glycolytic metabolism is not limited to supporting cell
proliferation (22). Thus, it appears that cells can modulate
their metabolism to adapt to different energy requirements and
signaling events in pathophysiological situations.

Historically, lactate was the end product of aerobic glycolytic
metabolism and was considered as a “waste” to be cleared from
blood by the liver and kidney (23). Growing evidence suggests
that lactate can be used as a sensitive and independent biomarker
for critical illnesses, including sepsis (24), cardiovascular
dysfunction (25, 26) and various types of cancer (27). Lactate
could be a potent signaling molecule in vascular homeostasis,
which is supported by a study showing that lactate disrupts
vascular barrier function and increases vascular permeability of
bone marrow during inflammation (14). Moreover, lactate
dehydrogenase (LDH), a key enzyme in aerobic glycolysis, has
been associated with worse outcomes in patients with viral
infections, including COVID-19 (28–31). In addition, serum
lactate levels in severe COVID-19 infected patients are
significantly increased (32–35), suggesting increased aerobic
glycolytic metabolism in COVID-19 infected patients (17). The
important question is whether the COVID-19 infection alters
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cellular metabolisms that contribute to cardiovascular
dysfunction. Based on current knowledge that aerobic
glycolytic metabolism is involved in metabolic immune
function (36) and cardiovascular dysfunction (37),
understanding of the potential mechanisms by which SARS-
CoV-2 causes endothelial cell barrier dysfunction could provide
preventative and therapeutic solutions for severe COVID-19
patients. In this review, we summarize the association between
the COVID-19 infection and cardiovascular dysfunction and
discuss the potential role of aerobic glycolytic metabolism and
SARS-CoV-2 induced endothelial cell barrier dysfunction,
leading to multiple organ damage.
CARDIOVASCULAR DISORDER IN
COVID-19 PATIENTS

Cardiovascular Disease Is a High Risk for
COVID-19 Infection
Cardiovascular disease (CVD) is a common comorbidity in the
patients with Severe Acute Respiratory Syndrome (SARS) and
was just as prevalent in patients who experienced Middle East
Respiratory Syndrome (MERS) during the previous global
pandemic (38). Numerous studies have shown that there are
similar genetic identity (79.6%) and biological features shared
between SARS-CoV-2 (for COVID-19) and SARS-CoV (for
SARS) (39–41). One study that was conducted held a 12-year
follow-up that consisted of 25 patients who had recovered from
the SARS-CoV infection; among these patients, 44% of them
exhibited cardiovascular system abnormalities (42). Once again,
due to the similarity in structure between SARS-CoV and SARS-
CoV-2, it is highly possible that Covid-19 may also cause similar
future troubles for the myocardium. Therefore, it is no surprise
that CVD is present in the patients with COVID-19 (with a
prevalence of ~17%) (6, 43, 44). A study, including 416
hospitalized COVID-19 infected patients in Wuhan (China),
by Shi et al. showed that patients with a history of CVDs had
higher risk of in-hospital death (45). Similarly, reports involving
1,591 patients (with a mortality rate of 26%) with COVID-19 in
the Lombardy (Italy) (46) and 393 patients with COVID-19 in
New York City (USA) (47) showed pre-existing CVD rates of
21% and 14%, respectively. In addition, a meta-analysis of fifty-
six studies including 159,698 COVID-19 patients revealed that
25% of ICU-admitted patients had CVD, and the pooled
prevalence of acute cardiac injury by 33.6%, arrhythmia by
33.0%, heart failure by 20.4%, coronal artery disease 20.6% and
hypertension by 43.6%, respectively (48). Another meta-analysis
including both ICU and non-ICU COVID-19 infected patients
in China (1,527 cases in total) showed that the proportions of
hypotension, cardio-cerebrovascular disease and diabetes in
COVID-19 patients were 17.1%, 16.4% and 9.7%, respectively
(49). Among these patients, the incidences of hypertension,
cardio-cerebrovascular disease and diabetes were at least
twofold higher in ICU cases than in non-ICU counterparts
(49), indicating that the patients with CVD are more
March 2022 | Volume 13 | Article 868679
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susceptible to suffer severe condition and are at a higher risk of
death. In a study from the National Health Commission of China
(NHC), mortality data for Covid-19 was released, and it
determined that 17% of the patients exhibited a history of
coronary heart disease while 35% had a history of hypertension
(50). These data led to the conclusion that who had any sort of
underlying CVDs and were simultaneously infected with SARS-
CoV-2 had a higher chance of experiencing more severe
symptoms. Therefore, it can be inferred that CVD/CVD-related
risk factors strongly affect the prognosis of the COVID-19 patients.

COVID-19 Infection Induces
Cardiovascular Dysfunction
Importantly, COVID-19 infected patients who do not have CVD
exhibit cardiovascular dysfunctions, including myocardial injury,
cardiac arrhythmia, as well as thrombotic complications; this
indicates that COVID-19 itself can induce cardiovascular
disorders (6, 51). This mechanism of direct infection occurs
when the virus immediately infects cardiomyocytes originating
from induced pluripotent stem cells (iPSCs); as a result, SARS-
CoV-2 infection in iPSCs induces morphological and cytotoxic
effects characterized by detaching from neighboring cells and
increased cell death, suggesting SARS-CoV-2 directly causes
damages to cardiac tissue (52). This observation may explain
myocardial complications in SARS-CoV-2 infection. Furthermore,
in another study pertaining to iPSCs, data revealed that after 72
hours of exposure to the SARS-CoV-2 infection, apoptosis as
well as cessation of beating will appear (53). To measure the
severity of injury done to the myocardium, the use of serum
troponin (troponin T or troponin I) level, which is a specific
marker for cardiac injury, can be applied (54–56). A multicenter
study showed that 278 (45.3%) of 614 COVID-19 infected
patients had elevated serum levels of troponin (troponin T
or troponin I) (56). Importantly, increased troponin levels,
independent from concomitant cardiac disease, were associated
with increased in-hospital mortality (56). A report from the
National Health Commission of China showed that serum
troponin I levels were increased and cardiac arrest occurred in
12% of COVID-19 infected patients who did not have CVDs
previously during hospitalization (2, 44, 50). Data from autopsy
analysis shows that SARS-CoV-2 virus was identified in 24
(61.5%) cardiac tissues of 39 patients with COVID-19 infection
(57). A report from a single-center shows that cardiac
arrhythmia was also a prevalent manifestation in 138 patients
with COVID-19 infection (58). This study documented that
arrhythmia occurred in 17% of hospitalized patients and 44%
of ICU-admitted COVID-19 infected patients (58). With a broad
range of laboratory coagulation parameter alterations including
D-dimer, prothrombin time and fibrinogen in COVID-19
infected patients, coagulation dysfunction has been considered
as a hallmark of SARS-CoV-2 infection. Tang et al. observed that,
in 183 consecutive COVID-19 infected patients, non-survivors
had higher D-dimer levels, fibrinogen degradation products and
longer prothrombin time, when compared with survivors (59). A
study by Klock et al. shows that the incidence of thrombotic
complications was 31% in 184 ICU-admitted patients with
COVID-19 infection in Dutch (60). This study also shows that
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venous thromboembolism, confirmed by CT pulmonary
angiogram (CTPA) and ultrasonography, accounted for 87% of
all thrombotic events (60). The thromboembolism in COVID-19
infected patients may result from excessive inflammation,
hypoxia and diffuse intravascular coagulation (61, 62).
However, anticoagulant therapy using prophylactic heparin in
COVID-19 patients who developed sepsis-induced coagulopathy
markedly reduced 28-day mortality from 64% to 40% (63). In
addition, uncontrolled blood pressure is a risk factor for COVID-
19 patients by causing acute kidney injury and chronic
obstructive pulmonary disease (COPD) (64).
ENDOTHELIAL CELL DYSFUNCTION IN
COVID-19 INFECTED PATIENTS

The endothelium is a layer of endothelial cells (ECs) that line the
interior surface of blood vessels and plays a critical role in
mediating vasomotor tone, maintaining blood fluidity, and
balancing local inflammatory mediators (65, 66). The
maladaptive response of ECs to acute inflammation contributes
to the pathogenesis of various infectious diseases and multiple
organ dysfunction syndrome (MODS) (67). Several recent
studies investigated mechanisms by which SARS-Cov-2 induces
EC dysfunctions, including inflammation, vasoconstriction,
permeability, and coagulation (68–70). A study by Ackermann
et al. shows that COVID-19 infection not only causes acute
respiratory distress syndrome (ARDS), but also harms the
vasculature (71). This pathologic study included seven lung
tissues from COVID-19 infected patients, seven lungs from
Influenza (H1N1) patients with ARDS, and 10 from age-
matched uninfected controls. These lung tissues were
examined with seven-color immunohistochemical analysis,
micro-computed tomographic imaging, scanning electron
microscopy, corrosion casting, and direct multiplexed
measurement of gene expression. The authors compared the
results between the groups focusing on the three distinct
angiocentric features including: 1) severe endothelial injury
associated with intracellular SARS-CoV-2 virus and disrupted
endothelial cell membranes, 2) widespread vascular thrombosis
with microangiopathy and occlusion of alveolar capillaries, and
3) significant new vessel growth through a mechanism of
intussusceptive angiogenesis. The COVID-19 infected patients
exhibited 9 times more alveolar capillary microthrombi
(P<0.001) compared with H1N1 influenza patients. COVID-19
infected patients also presented with 2.7 greater of the amount of
new vessel growth through intussusceptive angiogenesis
(P<0.001) than in H1N1 influenza. In addition, endothelial
cells from the COVID-19 patients exhibited cellular swelling,
disrupted intracellular junctions, and a loss of contact with the
basement membrane. An in vitro study by Robles and colleagues
showed that the spike protein of SARS-CoV-2 promotes the
expression of leukocyte adhesion molecules VCAM1 and ICAM1
upon binding to integrin a5b1 on ECs, resulting in increased
leukocyte adhesion to ECs (72). A previous study shows that
integrin a5b1 activates NF-kB in ECs to elicit inflammation (73).
Consistently, SARS-CoV-2 protein treatment enhanced p65
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nuclear accumulation and IL-6 expression in ECs (72, 74). To
explore the mechanism of myocardial injury in COVID-19
infected patients, Feng et al. utilized a rhesus macaque model
of SARS-CoV-2 respiration tract infection (75). They observed
that increased infiltration of inflammatory cells in left ventricle
tissues and elevated levels of inflammatory cytokines in infected
macaques, suggesting the occurrence of viral myocarditis
following SARS-CoV-2 infection (75). Notably, the expression
of ICAM1 and VCAM1 in the left ventricle tissues was also
upregulated in infected macaques as compared to healthy
controls (75). These findings provided evidence showing that
the endothelial cell damage may be attributed to direct SARS-
CoV-2 infection and perivascular inflammation.
ACE-2 AND ENDOTHELIAL CELL
DYSFUNCTION IN COVID-19 INFECTION

Angiotensin-Converting Enzyme 2 (ACE2) is a type-I
transmembrane glycoprotein that negatively regulates the renin-
angiotensin system (RAS) by degrading Ang II to the heptapeptide
Ang 1-7 (76, 77). The protein was initially identified as a homolog
to ACE in 2000 by Tipnis et al. (78). Besides its peptidase-
dependent actions in regulating RAS, ACE2 was then identified
as an essential receptor for SARS coronavirus in 2003 (79).
Although ACE2 is shown as a protective molecule against lethal
lung injury in SARS, the expression of ACE2 is not limited to
respiratory system (80). Instead, a recent immunohistochemical
analysis showed that ACE2 has limited expression in respiratory
tracts compared to other tissues/cells, including enterocytes, renal
tubules, gallbladder, cardiomyocytes, male reproductive cells,
placental trophoblasts, ductal cells, eye, and vasculature (76).
Intriguingly, ACE2 is expressed in arterial and venous
endothelial cells and arterial smooth muscle cells in various
human organs (81). It is suggested that ACE2 is required to
maintain the endothelial integrity inside the vessels (11). Indeed,
existing data for SARS-CoV-1 in 2002 SARS pandemic indicate
that virus binding can reduce ACE2 levels, which may lead to
endothelial dysfunction (80).

Recent evidence suggests that ACE2 is a functional receptor
for SARS-CoV-2 to enter host target cells (82, 83). The infection
of SARS-CoV-2 begins with SARS-CoV-2 cleaving its S protein
through transmembrane protease serine 2 (TMPRSS-2) and
attaching to the ACE-2 receptor (84–86). This ongoing
infection produces significant endotheliitis, a robust immune
response and a subsequent increase in pro-inflammatory
cytokines, vasoactive molecules, and immune cells like
neutrophils, macrophages, monocytes, and lymphocytes which
all play a role in propagating a response known as the cytokine
storm (71, 84, 87, 88). In vitro study using engineered human
blood vessel organoids showed that SARS-CoV-2 can directly
infect endothelial cells via ACE2 (89). Varga et al. reported that
the presence of viral inclusion structures was detected in
endothelial cells in COVID-19 patients (9). Intriguingly,
neutralization of ACE2 using soluble human ACE2 decreased
virus-infected endothelial cells in vivo (89). These pieces of
evidence highlight the role of ACE2 in mediating of SARS-
Frontiers in Immunology | www.frontiersin.org 4
CoV-2 induced endothelial cell injury. Indeed, the endothelium
is a vulnerable target by SARS-CoV-2 infection, and these
infected endothelial cells exhibit dramatic changes in
morphology and function (71). Therefore, endothelial cell
dysfunction could be an important and potential pathogenesis
of COVID-19 infection induced multiple organ dysfunction. In
the following sections, we step beyond our focus on the virus and
discuss the role of aerobic glycolytic metabolism in COVID-19-
driven endothelial cell injury in order to better understand the
potential mechanisms that cause the endothelial cell damage in
COVID-19 infected patients.
SWITCHING METABOLISM IN COVID-19
INFECTION

Previous studies have shown that virus infection dramatically
modified the cellular metabolism of host cells (90). It is
hypothesized that the virus-driven metabolic process in a host
cell is to provide macromolecules needed for virion replication
and assembly (20, 90). Thomas et al. observed that the levels of
glucose and free fatty acid in the serum of COVID-19 infected
patients were significantly increased providing fuels for viral
proliferation (91). Similarly, Shen et al. reported that the serum
glucose levels were elevated in the severe patients infected with
COVID-19, when compared with control groups (92). In
addition, patients with pre-existing metabolic diseases, including
diabetes, have greater risk of developing severe conditions (93). A
study including 174 COVID-19 infected patients implies that
diabetic patients without other comorbidities were at high
risk of severe pneumonia, excessive inflammation responses and
hypercoagulable state (94). To understand the potential
mechanism by which uncontrolled diabetes is a risk factor for
severe COVID-19, Codo et al. investigated the correlation between
glycolysis and SARS-CoV-2 replication and found that glucose
enhanced SARS-CoV-2 load in monocytes in a dose dependent
manner (95). In agreement, a retrospective observational study,
including 2433 COVID-19 patients admitted to the Houshen Shan
hospital in Wuhan between February and April in 2020, indicates
that elevated glucose level could be a predictive maker for the
disease progression and the fatality of COVID-19 patients (96).
Moreover, He et al. reported that COVID-19 infected patients
without pre-existing diabetes also presented high blood glucose
levels (97), indicating that SARS-CoV-2 infection may change
metabolic profiles in these patients. Indeed, most viruses tested to
date can induce aerobic glycolytic metabolism to favor their
replication (20), which seems to be the same case for SARS-
CoV-2 infection. Thus, when the virus enters a diabetic patient,
especially a Type II diabetic patient, the high glucose levels within
the host results in a disrupted glucose metabolism. This disruption
favors SARS-CoV-2 replication and cytokine production while
simultaneously dampening the proper effects of the immune
system (T-cell response/function is worsened), prompting a
more severe inflammatory response (cytokine storm) within this
demographic (95).

Mitochondria are essential cellular organelles in regulating
cellular energy, metabolism, and host innate immunity (98–100).
March 2022 | Volume 13 | Article 868679
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Transcriptomic study by Mooamalla et al. shows that SARS-
CoV-2 infection downregulated tricarboxylic acid cycle (TCA)
and oxidative phosphorylation in several human respiratory cell
lines, indicating mitochondrial dysfunction (101). Indeed,
emerging evidence shows that SARS-CoV-2 highjacks
mitochondria and replicates in mitochondria, leading to
impaired mitochondrial dynamics and cell death (102). It is
proposed that aerobic glycolytic metabolism is enhanced when
mitochondrial defect occurs (103, 104). Mooamalla and
colleagues also found that the expression of lactate
dehydrogenase (LDHA), which is a dispensable enzyme for
aerobic glycolysis, was increased and lactate production was
elevated in SARS-CoV-2-infected human respiratory cell lines
(101). Notably, similar observation is made in peripheral blood
mononuclear cells (PBMCs) isolated from COVID-19 patients,
in which the rate of glycolysis was increased, and the
mitochondrial respiration was impaired (105).

It has been reported that SARS-CoV-2 affects both the upper
and lower respiratory tract, which, in many cases, results in
hypoxemia (106, 107). In addition to virus-driven metabolic
changes, lack of oxygen may also be a determinant in regulating
metabolism in patients with COVID-19 infection. Inadequate
oxygen supply shifts oxidative phosphorylation to aerobic
glycolysis, leading to increased production of lactate and
extracellular acidification. It is demonstrated that lactate is a
natural suppressor for antiviral signaling though inhibiting
retinoic acid-inducible gene (RIG) (21). Collectively, COVID-
19 infection could induce a metabolic switch from oxidative
phosphorylation to aerobic glycolysis which does not only
benefit to virus replication, but also priming innate immunity
mediated pro-inflammatory cytokine production (95, 108). In
addition, the intermediates of aerobic glycolytic metabolism
could play an important role in the regulation of pro-
inflammatory response and endothelial cell dysfunction (12, 14).
AEROBIC GLYCOLYTIC METABOLISM
AND ENDOTHELIAL CELL INJURY IN
COVID-19 INFECTION

As mentioned above, growing evidence shows that COVID-19
infection switches metabolisms from oxidative phosphorylation
to aerobic glycolytic metabolism (17, 105), which allows the
rapid production of energy and other substrates for viral
replication (20). Lactate is the end product of aerobic glycolysis
and serves as an important diagnostic biomarker for critical
illnesses, such as sepsis/septic shock (24). It has been shown that
severe COVID-19 patients developed typical symptoms that are
similar to septic shock, such as vascular microthrombosis, multi-
organ dysfunction syndrome (MODS), coagulopathy, high
cytokine production (109). Considering the parallels in the
pathophysiology of sepsis and COVID-19, it is proposed that
viral sepsis is crucial to the pathogenetic mechanisms of COVID-
19 (110). In this case, lactate generated from aerobic glycolytic
metabolism may be also applied as a biomarker for diagnosis and
prognosis of COVID-19 infected patients. Velavan et al. showed
that hospitalized patients with moderate to severe COVID-19
Frontiers in Immunology | www.frontiersin.org 5
(N = 18) had significantly higher blood lactate levels than mild
ambulatory COVID-19 patients (N = 16) (33). In addition, a
retrospective study including 45 ICU-admitted patients with
COVID-19 showed that sequential organ failure assessment
(SOFA) score and initial blood lactate levels were significantly
higher in non-survivors (N = 11) compared to survivors
(N = 34), indicating that blood lactate level mirrors organ
dysfunction and is associated with poor clinical outcomes of
COVID-19 ICU patients (32). In consistent with this observation,
Metkus et al. reported that non-survivors (N = 88) had significantly
elevated blood lactate levels than survivors (N = 155) of COVID-19
patients (3.6 mmol/L vs. 2.0 mmol/L, P = 0.005) (111). Moreover,
blood lactate levels positively and independently correlate with
troponin (troponin I or troponin T) levels in COVID-19 patients
(N = 243, P = 0.007), suggesting that lactate may serve as predictor
for myocardia injury in COVID-19 patients (111). These pieces of
evidence suggest that elevated lactate levels could correlate with both
severity and mortality of COVID-19. Of note, a pooled analysis,
including 1,532 COVID-19 patients, reported that increased lactate
dehydrogenase (LDH) levels were associated with a 6-fold increase
in odds of severe COVID-19 and 16-fold increase in odds of
COVID-19 mortality (112). Given that LDH is involved in lactate
production, it is advisable that lactate consumption might be
also increased.

Although lactate was considered as a waste in the past decades
(23), growing evidence has shown that lactate may exert
important regulatory roles in various pathophysiological
processes, including immunosuppression (12, 113–115), cell
signaling (13, 116) and gene transcription (117–119). Recent
studies further reveal that lactate can directly induce
permeability in inflammatory bone marrow endothelium by
downregulation of VE-cadherin expression (14), indicating that
lactate could contribute to the pathophysiologic mechanisms of
cardiovascular injury in COVID-19 infection. As a result, the
implication of serum lactate may be able to present us with an
improved method of measuring clinical severity and observe
clinical treatment response in the context of COVID-19. In the
sections below, we discuss the possible mechanisms of lactate-
mediated endothelial injuries in the pathogenesis of COVID-
19 infection.

Lactate and SARS-CoV-2 Infection-
Induced Endothelial Cell Injury
The integrity of endothelium is required for maintaining the
vascular homeostasis (120). SARS-CoV-2 infects the host cells
using the ACEs receptor (85), which is expressed by endothelial
cells. Established evidence suggests that SARS-CoV-2 hijacks the
endothelial cells and causes significant changes in endothelial cell
morphology, i.e. disruption of intercellular junctions and cell
swelling in COVID-19 infected patients (9, 71). Several lines of in
vitro and in vivo evidence also demonstrate that endothelial cells
are highly susceptible to SARS-CoV-2 infection (89, 121–123). It
has been reported that SARS-CoV-2 proliferation in endothelial
cells directly induces apoptosis in COVID-19 patients (9). In
addition, circulating endothelial cells (CECs) have been
considered as a marker for damaged endothelium in various
vascular diseases (124–126). Importantly, COVID-19 infected
March 2022 | Volume 13 | Article 868679
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patients have higher numbers of CECs than healthy controls,
indicating the occurrence of endothelium damages in COVID-19
patients due to direct virus infection (127).

Infection of SARS-CoV-2 in the pulmonary tissues impairs gas
exchange leading systemic hypoxia and enhanced glycolysis
metabolism in endothelial cells and immune cells by stabilizing
hypoxia-inducible factor-1 (HIF-1) (128). HIF-1 is a powerful
inducer of glycolysis via upregulation of enzymes involved in
glycolysis, including hexokinase (HK), pyruvate kinase 2 (PKM2),
LDHA/LDHB and pyruvate dehydrogenase kinase (PDK) in
COVID-19 (129–131) (Figure 1). In addition, SARS-CoV-2
infection triggers mitochondrial ROS production, leading HIF1
stabilization and consequently promotes glycolysis (95) (Figure 1).
Notably, it is proposed that lactate can induce the activation of
hypoxia-inducible factor-1 (HIF-1), which further enhances aerobic
glycolysis and promotes SARS-CoV-2 infection and replication (95,
132, 133). Indeed, inhibition of lactate production by 2-DG or
oxamate suppressed aerobic glycolysis efficiently and reduced viral
load in human monocytes (95). Previous studies demonstrate that
endothelial cells rely heavily on aerobic glycolysis for ATP
production while having little glucose oxidation (134, 135). This
may make endothelial cells more susceptible to SARS-CoV-2
infection. Therefore, it is possible that lactate generated from
aerobic glycolysis could be beneficial to SARS-CoV-2
proliferation and mediation of endothelial cell injury.

Lactate and Endothelium Permeability in
COVID-19 Infection
Endothelium hyperpermeability contributes to tissue fluid
overload (edema) and the persistent hypotension in critically ill
Frontiers in Immunology | www.frontiersin.org 6
patients. Prolonged edema may lead to multiple organ failure
and ultimately death (136). Clinical data suggests that COVID-
19 infected patients with severe conditions exhibit lower values
of serum albumin, indicating the presence of vascular
permeability (137). Wu and colleagues provided histological
evidence showing that ICU-admitted COVID-19 infected
patients who were characterized with hypoalbuminemia had
disrupted inter-endothelial junctional complex in the lung
tissues (138). It is well known that disarrangement of
junctional proteins in the plasma membrane of adjacent
endothelial cells increases vascular permeability (139, 140).
Vascular endothelial cadherin (VE-cadherin) is one of the
determinants of endothelial cell contact integrity (141). A
recent study by Flores-Pliego et al. showed that the expression
of VE-cadherin, as well as Claudin 5, decreased in the
endothelium of decidua and chorionic villi of placentas derived
from women with severe COVID-19, when compared to healthy
controls (142). Similarly, Feng and colleagues utilized a rhesus
macaque model of SARS-CoV-2 respiratory tract infection and
observed that SARS-CoV-2 infection significantly reduced VE-
cadherin levels in the heart of rhesus macaques when compared
to uninfected controls (75). In agreement with these in vivo
observations, several in vitro studies demonstrated that SARS-
CoV-2 spike proteins can also disorganize the VE-cadherin
complex and decrease VE-cadherin levels in cultured
endothelial cells (69, 72, 74). Therefore, SARS-CoV-2 infection
can disrupt VE-cadherin largely responsible for the vascular
permeability in COVID-19 patients.

Notably, a recent study by Khatib-Massalha et al. showed that
lactate directly decreases VE-cadherin expression in endothelial
FIGURE 1 | Proposed model of aerobic glycolysis activation in SARS-CoV-2 infected endothelial cells. SARS-CoV-2 infection of pulmonary tissues leads to hypoxia.
SARS-CoV-2 infection also causes mitochondrial dysfunction and reactive oxygen species (ROS) production in endothelial cells. Both hypoxia and ROS mediate HIF-
1 stabilization. Enzymes involved in glycolysis, including hexokinase (HK), pyruvate kinase 2 (PKM2), lactate dehydrogenase (LDH) are upregulated by HIF-1 signaling,
resulting in increased lactate production and SARS-CoV-2 replication in endothelial cells.
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cells, which contributes to the hyperpermeability of bone
marrow (BM) endothelium (14). G protein-couple receptor 81
(GPR81) is a lactate receptor (143). Activation of GPR81 by its
agonist (3,5-DHBA) has similar effects as lactate on reducing the
expression of VE-cadherin in endothelial cells (14). In contrast,
knockout of GPR81 attenuated lactate-induced BM vascular
permeability, demonstrating that GPR81 is essential for lactate-
induced vascular permeability (14). In addition, it is reported
that SARS-CoV-2 infection activates pyroptotic signaling in
lungs and promotes interleukin-1b (IL-1b) release, which
results in downregulation of VE-cadherin on lung endothelial
cells (144). IL-1b-induced downregulation of VE-cadherin
contributes to lung vascular injury following SARS-CoV-2
infection (144). The underlying mechanism for IL-1b-induced
downregulation of VE-cadherin in SARS-CoV-2-infected
endothelial cells could be mediated by cAMP response element
binding protein (CREB)-mediated suppression of VE-cadherin
transcription (145). Therefore, it is conceivable that the action of
lactate in promoting vascular permeability is mediated not only
by favoring SARS-CoV-2 replication cells, but also by directly
disrupting VE-cadherin and suppressing VE-cadherin
transcription in endothelial cells upon GPR81 activation (Figure 2).

Lactate and Coagulation in
COVID-19 Infection
COVID-19-induced multiple organ damage is associated with an
abnormal coagulation (146). COVID-19 patient autopsies have
Frontiers in Immunology | www.frontiersin.org 7
revealed thrombi in the microvasculature (147). All-cause
mortality in COVID-19 patients with thrombotic events is
significantly higher than those without thrombotic events
(148). Several hospital-based studies in Wuhan (China) reveal
that some of the COVID-19 patients had elevated serum levels of
pro-coagulation factors, including prothrombin (PT) and D-
dimer, while the levels of fibrinogen and platelet are normal,
representing the risk of thrombosis (59, 149, 150). Mechanistic
studies reveal that SARS-Cov-2 spike protein directly binds
platelet ACE2 and induces phosphorylation of ERK, p38 and
JUK to activate platelets, which promotes thrombosis in COVID-
19 (151). In addition, a recent study shows that SARS-Cov-2
virions can be internalized by platelets causing programmed cell
death of platelets and extracellular vesicle release from platelets
(152) (Figure 3). Moreover, inflammation and metabolism
changes caused by SARS-Cov-2 infection are also considered
as major contributors to coagulopathy in infected patients (153).
However, with currently unknown mechanisms, clinical
management of thrombosis with standard anti-coagulation
dose of heparin failed to show satisfying outcomes (154–156).
Two other plausible methods of managing coagulation include
RAS inhibitors and statins. It is reported that the implementation
of either substance has beneficial effects on COVID-19 clinical
symptoms (157–159).

Thachil et al. has recently discussed that hypoxia could be a
mechanism of heparin resistance in COVID-19 patients (61).
Indeed, oxygen deprivation has long been associated with
FIGURE 2 | Proposed model of endothelium permeability induced by lactate/GPR81 signaling and SARS-CoV-2 infection. SARS-CoV-2 infection promotes the
release of the pro-inflammatory cytokine IL-1b. IL-1b suppresses cAMP formation and CREB-mediated transcription of VE-cadherin in endothelial cells. SARS-CoV-2
infection also increases lactate production. Lactate activates GPR81 and reduces cAMP generation and CREB-mediated transcription of VE-cadherin in endothelial
cells. In addition, SARS-CoV-2 spike proteins directly disorganize VE-cadherin complex and suppress VE-cadherin transcription in endothelial cells. Disruption of VE-
cadherin complex is responsible for vascular permeability in COVID-19.
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thrombosis by triggering the pro-coagulation pathway (160).
Both hypoxia and infection can result in enhanced aerobic
glycolysis and consequent accumulation of lactate. It is
noteworthy that metabolome analysis of venous thrombus
from rabbits revealed that lactate is one of the most abundant
metabolites in the thrombus (161, 162). Activated platelets,
together with endothelial cells, are critical mediators of arterial
thrombosis (163). Regardless of the nature of their stimulus,
activated platelets switch their metabolism to aerobic glycolysis
and produces a significant amount of lactic acid (164, 165).
Increased extracellular lactate levels and acidity may further
induce the continuous activation of Na+/H+ exchanger (NHE)
in platelets and vascular endothelium, leading to the
development of thrombosis (166, 167). In addition, elevated
lactate levels in pulmonary embolism (PE) patients have been
shown to correlate with impaired plasma fibrinolytic capacity
and increase thrombin generation and neutrophil extracellular
trap (NET) formation (168) (Figure 3). Importantly,
pharmacological inhibition of aerobic glycolysis, which
suppresses lactate production, efficiently reduced thrombosis in
mice (165).
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Lactate and HMGB1 in COVID-19
Infected Patients
High mobility group box 1 (HMGB1) is a chromatin-linked
small protein that has nuclear, cytosolic and extracellular
functions in various pathophysiological processes (169–174).
Accumulating evidence shows that serum HMGB1 level is a
potential biomarker for COVID-19 infected patients (175). A
retrospective study, including 121 COVID-19 patients, shows
that circulating HMGB1 and S100A8/A9 levels were significantly
elevated in ICU-admitted COVID-19 patients (N = 40)
compared to non-ICU COVID-19 patients (N = 81) (176). A
similar observation was made by Chen et al. showing that severe
COVID-19 patients (N = 11) had significantly higher levels of
HMGB1 than non-severe COVID-19 patients (N = 29) (175).
Gowda et al. reported that overexpression of SARS-Cov-2 spike
protein in respiratory epithelial cells increased HMGB1 levels
(52). In addition, SARS-Cov-2 spike protein caused cell death of
epithelial cells, which may be responsible for subsequent release
of HMGB1 (52) (Figure 4).

We and others have shown that adaption to aerobic glycolysis
in immune cells promotes the acetylation of HMGB1, leading to
FIGURE 3 | Proposed model of platelet activation, thrombosis and endothelial cell injury induced by SARS-CoV-2 infection and lactate. Binding of SARS-CoV-2
spike protein to ACE2 leads to MAPK signaling activation and subsequent platelet activation. Activated platelets release coagulation factors and cytokines to
promote thrombosis. Internalization of SARS-CoV-2 virions induces the release of extracellular vesicles from platelets to facilitate thrombosis. In addition, lactate
(acidity) also contributes to thrombosis by promoting activation of platelets, endothelial cells, and NETs.
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its extracellular release during infection (13, 177). HMGB1
acetylation is a concisely regulated process that involves
various signaling pathways. Lu et al. shows that activation of
JAK/STAT1 signaling is sufficient for LPS-induced HMGB1
Frontiers in Immunology | www.frontiersin.org 9
hyperacetylation and cytoplasmic accumulation in macrophages
(178). In addition, HMGB1 acetylation and release can be
regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in
activated immune cells (179, 180). Moreover, previous studies
FIGURE 4 | Proposed model of HMGB1 release in SARS-CoV-2 infection. SARS-CoV-2 infection causes death of epithelial cells and release of HMGB1. Lactate,
derived from aerobic glycolysis, also promotes HMGB1 acetylation and release from macrophages/monocytes. Elevated levels of HMGB1 further promotes
inflammatory responses, ACE2 expression, endothelium permeability and thrombosis in COVID-19.
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indicate that HMGB1 acetylation is part of a general acetylation
wave controlled by histone lysine acetylases and deacetylases (181–
183). Interestingly, lactate is a potential inhibitor of histone lysine
deacetylases (117). Indeed, our recent study demonstrated that
lactate significantly increased nuclear translocation of histone
lysine acetylases CBP and p300, while suppressed the expression
of histone lysine deacetylase SIRT1 in macrophages (13). This
regulatory role of lactate tilts the balance of acetylation/
deacetylation of HMGB1 towards acetylation (13). Acetylated
HMGB1 mainly localized in cytoplasm and subsequently
released into the extracellular environment. In an in vitro
endothelium barrier injury model, Zhou et al. observed that
HMGB1 disrupted endothelium integrity and increased
endothelium permeability (184). Consistently, we observed that
lactate promoted HMGB1 secretion via exosome release and
induced endothelium barrier dysfunction (13). In addition, it has
been stated that hyperglycemia is common in hospitalized
COVID-19 patients and is strongly associated with worse
outcomes (185–188). COVID-19 patients with early-onset
hyperglycemia, defined as blood glucose > 180 mg/dl during the
first 2 days after ICU admission, had higher levels of lactate than
patients without hyperglycemia (186). In diabetes hyperglycemia
promotes the release of HMGB1 and upregulates receptor for
advanced glycation end products (RAGE) (189) (Figure 4).
Notably, numerous studies show that HMGB1 facilitates
thrombosis via promoting platelet activation and NET
formation (190–192) (Figure 4). HMGB1 can also induce the
expression and activation of tissue factor (TF), which is involved in
inflammation-related thrombosis, in endothelial cells in a
concentration dependent manner (193). Moreover, in vitro
treatment of alveolar epithelial cells with exogenous HMGB1
increased the expression of SARS-CoV-2 entry receptor ACE2
(175) (Figure 4).
CONCLUSIONS

SARS-CoV-2 infection causes metabolic reprogramming, such as
increased glucose consumption and lactate production, which
plays a role in the severity and mortality of COVID-19. Lactate is
not only a valuable biomarker but also a critical signaling
molecule in critical illness, including COVID-19. Thus, it is
proposed that both reduced lactate production and inhibition
of lactate-mediated signaling could improve COVID-19 (194). In
this context, application of glycolysis inhibitors, such as 2-deoxy-
D-glucose (2-DG), may have beneficial effects on COVID-19-
infected patients. 2-DG is a glucose analogue which
competitively inhibits the production of glucose-6-phosphate
and consequently suppresses the glycolytic pathway (195). Our
previous studies have demonstrated that at non-toxic dosages 2-
DG markedly decreased lactate production and improved
cardiac function in polymicrobial sepsis mice (196). Notably,
the emergent use of 2-DG as an adjunct therapy in COVID-19
patients has been granted in India (197). In addition, animal
studies show that lactate activates GPR81, a lactate specific
receptor, to promote endothelial injury and immune cell
dysfunction, which can be reversed by GPR81 inhibitors (12–14).
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Lactate can also be taken up by various cells through
monocarboxylate transporter 1 (MCT1) (13, 198). We recently
reported that blocking lactate influx by MCT1 inhibitor, as well as
suppression of GPR81 signaling, decreased HMGB1 release from
macrophages (13). Therefore, similar therapeutic strategies, either
inhibition of lactate/GPR81 signaling or block lactate influx byMCT
inhibitors, could also be used to abolish the detrimental effects of
lactate in SARS-CoV-2 infection (194). On the other hand, priming
the immune system with immunomodulatory components such as
glucans may protect cardiovascular dysfunction in COVID-19.
HMGB1 is a potential biomarker and may serve as a therapeutic
target in severe COVID-19 (175). Our group previously reported
that glucan phosphate improved cardiac function and suppressed
HMGB1 translocation to the cytoplasm during sepsis (199, 200).
This mode of action of glucan may counteract the effect of lactate in
promoting HMGB1 release during SARS-CoV-2 infection (13).
Importantly, a recent study has shown that glucans and mannans
can be used as adjuvants to enhance themagnitude and durability of
COVID-19 vaccines (201–203).

Since the outbreak of COVID-19, significant effort has been
made to understand the pathogenesis of this new disease. With
evidence collected from histological studies and biomedical tests,
there has been increasing recognition that endothelial cell injury
is one of the major contributors to the severity and mortality of
COVID-19 infected patients. Recent evidence highlights the role
of metabolism switching in the regulation of innate immune and
inflammatory responses, which is observed in COVID-19
infected patients (204, 205). This review summarizes the
potential role of aerobic glycolysis-derived lactate in the
COVID-19 infection. In this mechanism of infection, lactate
serves as an mediator that facilitates SARS-CoV-2 infection of
endothelial cells, which leads to endothelial cell injury and
multiple organ dysfunction. It is clear that growing evidence
shows that lactate is involved in SARS-CoV-2-mediated
endothelial cell death, vascular permeability, and coagulopathy.
On the other hand, elevation of lactate levels, due to enhanced
glycolysis, could also contribute to endothelial injury by altering
immune cell function. Further basic science research is needed to
validate whether targeting aerobic glycolytic metabolism could
be beneficial for patients with COVID-19 infection.
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