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Insufficiency of DNA repair enzyme ATM
promotes naive CD4 T-cell loss in chronic
hepatitis C virus infection
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Abstract

T cells have a crucial role in viral clearance and vaccine response; however, the mechanisms regulating their responses
to viral infections or vaccinations remain elusive. In this study, we investigated T-cell homeostasis, apoptosis, DNA
damage, and repair machineries in a large cohort of subjects with hepatitis C virus (HCV) infection. We found that
naive CD4 T cells in chronically HCV-infected individuals (HCV T cells) were significantly reduced compared with age-
matched healthy subjects. In addition, HCV T cells were prone to apoptosis and DNA damage, as evidenced by
increased 8-oxoguanine expression and yH2AX/53BP1-formed DNA damage foci—hallmarks of DNA damage
responses. Mechanistically, the activation of DNA repair enzyme ataxia telangiectasia mutated (ATM) was dampened in
HCV T cells. ATM activation was also diminished in healthy T cells exposed to ATM inhibitor or to HCV (core protein)
that inhibits the phosphoinositide 3 kinase pathway, mimicking the biological effects in HCV T cells. Importantly,
ectopic expression of ATM was sufficient to repair the DNA damage, survival deficit, and cell dysfunctions in HCV
T cells. Our results demonstrate that insufficient DNA repair enzyme ATM leads to increased DNA damage and renders
HCV T cells prone to apoptotic death, which contribute to the loss of naive T cells in HCV infection. Our study reveals a
novel mechanism for T-cell dysregulation and viral persistence, providing a new strategy to improve immunotherapy
and vaccine responses against human viral diseases.

Introduction carcinoma—a leading cause for liver transplantation’.

Hepatitis C virus (HCV) is a blood-born pathogen
characterized by a high rate (>80%) of chronic infection,
which can progress to liver cirrhosis and hepatocellular
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Notably, HCV has evolved numerous strategies to evade
host immunity and harness virus persistence’, providing
an excellent model to study the mechanisms of virus-
mediated host immune dysfunction in humans. We and
others have previously reported that patients with chronic
HCV infection exhibit premature T-cell aging, as
demonstrated by overexpression of aging markers and
telomere attrition—indicating excessive proliferative
turnover or inadequate telomeric maintenance®™°. How-
ever, the molecular mechanisms that control T-cell
homeostasis and virus persistence in humans remain
unclear.

T-cell homeostasis is tightly controlled, requiring a fine
balance between influx of newly generated T cells from the
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thymus and efflux by consumption via T-cell apoptosis, and
self-replication within the existing pools of T lymphocytes”
® With deficient thymic influx in aging adults, the immune
system responds to in vivo and in vitro challenges by
expanding existing T cells, leading to increased proliferative
turnover, telomere attrition, and cell apoptosis” . We
hypothesize that premature T-cell aging not only involves
virus-specific effector and memory T cells engaging in
chronic viral infection, but may also extend to the com-
partment of naive T cells that are unprimed by antigens. In
support of this notion, broad regulatory anomalies,
including the markers for T-cell exhaustion and senescence,
are found not only expressed on virus-specific T cells,
but also on unprimed naive T cells that have not yet
engaged in immune responses”® %, This notion is also
supported by the observations that individuals with chronic
viral (HCV or HIV) infection often have blunted vaccine
responses, suggesting a broad and shared mechanism of
immune dysregulation, particularly naive CD4 T-cell dys-
function, and vaccine non-responsiveness in virally infected
individuals® * 1>,

Human naive T cells have a relatively long life span
(150~160 days) and thus are exposed to a multitude of
genotoxic stressors, leading to 1% of a pool of 300 billion
T cells to be replaced daily” ®. Notably, naive T cells are
typically resistant to death receptor/ligand (Fas/Fas-L)-
mediated apoptosis, pointing toward cell-internal signals
as apoptosis initiators®®, One of the internal stressors
linked to apoptosis is damaged DNA, which is particularly
important in senescent cells that have been chronically
exposed to the endogenously generated reactive oxygen
species (ROS)*'. To maintain genomic stability and cell
survival, cells continuously recognize and respond to this
DNA damage, which will either activate DNA damage
checkpoints to arrest cell cycle progression and allow for
repair or, if the damaged DNA is beyond repair, undergo
apoptosis®2.

A major sensor of DNA breaks is the MRN complex
(MRE11, RAD50, and NBS1), which subsequently recruits
the protein kinase ataxia telangiectasia mutated (ATM),
an enzyme critically involved in repairing DNA double-
strand breaks (DSBs) for cell survival®® 2% ATM was
originally identified in individuals with ataxia tel-
angiectasis, an autosomal recessive disorder exhibiting
progressive ataxia, telangiectasia, immunodeficiency,
genome instability, and cancer predisposition®. ATM,
accompanied by ataxia telangiectasia Rad3-related
(ATR) and DNA-dependent protein kinase catalytic sub-
unit ¢ (DNA-PKc), is the pinnacle kinase of the DNA
repair signaling cascade, and belongs to the phosphoino-
sitide 3 kinase (PI3K)-related kinase family26. Accumula-
tion of DNA-DSBs activates ATM cascades, along with
other DNA damage repair machineries, which are
important for DNA reprogramming and cell remodeling.
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To identify factors that perturb T-cell homeostasis
during HCV infection, we investigated the mechanism
that controls T-cell survival and DNA damage repair
capabilities in primary CD4 T cells. We demonstrate that
insufficiency of ATM leads to accumulation of DNA
damage, rendering naive CD4 T cells sensitive to apop-
tosis and T-cell loss, contributing to viral persistence and
vaccine non-responsiveness in chronic HCV infection.

Results
Naive CD4 T-cell apoptosis and loss in HCV-infected
patients

As an initial approach to identify factors that perturb T-
cell homeostasis in HCV infection, we characterized the
frequencies of primary T cells and their survival rate or
susceptibility to apoptosis in individuals with chronic
HCV infection (n = 68) versus age-matched healthy sub-
jects (HS) (n=38). We first analyzed total CD4",
CD45RATCD4™" (naive), and CD45RA~CD4" (memory)
T-cell frequencies in the peripheral blood mononuclear
cells (PBMCs) using flow cytometry. As shown in Fig. 1a
(representative dot plots and summary data), while the
total CD4 T-cell numbers in PBMCs were slightly lower
in HCV patients, the compartment of naive CD4 T cells
was significantly reduced (P <0.0001), whereas memory
CD4 T cells were expanded in chronically HCV-infected
subjects compared to HS. To exclude the possibility that
the gated PBMCs may include some CD4-expresing
monocytes, we further gated on CD3™ T cells, followed
by analyzing CD45RA"CD3"CD4" (naive) and
CD45RACD3"CD4" (memory) T-cell populations,
which produced similar results; i.e., chronic HCV subjects
exhibited a significant contraction of naive T-cell pools
and expansion of memory T cells in their peripheral blood
(data not shown). Notably, the loss of naive CD4 T cells
from chronically HCV-infected subjects did not correlate
with HCV genotype, viral load, or hepatic transaminase
levels (data not shown). This observation is in line with
the previous reports showing a reduced naive CD4 T-cell
number—reflecting a state of immune activation and
exhaustion in patients with chronic HCV infection® *°.

Apoptosis represents a major mechanism controlling T-
cell homeostasis in adults’. The vast majority of CD4
T cells in vivo are in a resting state and, accordingly, do
not undergo apoptosis. When removed from their natural
resources and kept ex vivo, human T cells spontaneously
and progressively go through the programmed cell death
(spontaneous apoptosis). To explore whether apoptosis
contributes to the naive T-cell loss in HCV-infected
individuals, we purified CD4"CD45RO~ naive and
CD4"CD45RA™ memory T cells from HCV*''~ subjects
and cultured the cells without stimulation for 0, 2, 4 days,
followed by measuring the Annexin V (Av)/7-Ami-
noactinomycin D (7AAD) expressions. As shown in
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Fig. 1 T-cell homeostasis and apoptosis in HCV-infected patients versus age-matched HS. a Naive CD4 T-cell loss in HCV patients vs. age-
matched HS. PBMCs isolated from HCV-infected patients and HS were analyzed using flow cytometry for T-cell homeostasis. Representative dot plots
and summary data of the flow cytometry for the percentages of total CD4", CD45RA*CD4" (naive), and CD45RA™CD4" (memory) T-cell frequencies in
PBMCs from HCV patients and HS are shown. Each symbol represents one particular subject; the mean + SE and P value of the statistical analysis are
shown, NS=no significance. b, ¢ Susceptibility of T cells to spontaneous apoptosis and death in HCV patients vs. HS. Naive and memory CD4 T cells
were purified from PBMCs of the subjects, cultured in vitro without stimulation for 0, 2, and 4 days, followed by flow cytometric analysis of AV and
7AAD expression. Representative dot plots for the cell purity, gating strategy, and summary data for the percentages of survival cells as well as
apoptotic cells are shown. n=number of subjects studied in each group. NS=no significance. P value with significant changes are shown
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Fig. 1b, c, although healthy T cells showed signs of
apoptosis/death accrual, an increased T-cell apoptosis and
decreased cell survival rate were observed in HCV-
infected patients, especially in the naive CD4 T-cell
pools. By day 4 in culture without stimulation, ~90% of
healthy naive T cells were alive, whereas only 75% of the
HCV naive T cells still remained survival. Notably,
increased apoptotic propensity (Av expression) was
inversely associated with cell survival rate, with HCV
naive T cells more prone to spontaneous apoptosis
compared with the HS. By day 4 in culture without sti-
mulation, HCV naive T cells exhibited significant apop-
tosis compared with HS (~40% vs. ~20%, P < 0.05), which
negatively correlated with the cell numbers present in the
peripheral blood from the same individuals (data not
shown). These results suggest that apoptotic susceptibility
of T cells from HCV-infected subjects may be one
mechanism contributing to the disproportionate T-cell
loss, whereas lack of thymic influx in aging adults and
increases of naive T-cell differentiation into antigen-
specific effector and memory T cells during persistent

viral infection may be other mechanisms for the different
outcomes of the two T-cell subsets.

DNA damage in naive CD4 T cells from HCV-infected
patients

Why naive CD4 T cells are susceptible to apoptosis and
loss in virally infected individuals is unclear. Unlike acti-
vated or memory T cells, resting naive T cells typically do
not express Fas surface receptor (Supplementary Fig-
ure S1A). In addition, blocking the extrinsic death path-
ways by disrupting Fas-Fas ligand, TNFa-TNF receptor,
and TRAL-TRAIL receptor interactions in CD4 T cells
did not affect cell apoptosis or death rates (data not
shown), indicating they are resistant to the exogenous
apoptotic pathway-mediated cell death, but sensitive to
endogenous oxidative stress, particularly ROS-mediated
genotoxicity”’. To assess endogenous DNA damage as a
possible  cause of impaired T-cell survival,
CD4"CD45RO™ naive and CD4"CD45RA~ memory
T cells were isolated from HCV-infected patients and age-
matched HS, cultured in vitro without stimulation for
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Fig. 2 DNA damage in CD4 T cells from HCV-infected patients versus age-matched HS. a, b 8-oxyguanine expression in CD4 T cells. Nand
memory CD4 T cells were purified from PBMCs of HCV-infected patients and HS, cultured in vitro without stimulation for 0-4 days, followed by flow
cytometric analysis of 8-oxyguanine expression, a marker for oxidative DNA strand breaks. Representative overlaid histogram and summary data for
mean florescence intensity (MFI) of 8-oxyguanine expression in HCV patients and HS are shown. ¢ Co-localization of 53BP1 and yH2AX in CD4 T cells.
Naive CD4 T cells were isolated from PBMCs of HCV patients and HS, cultured in vitro without stimulation for 0-4 days, followed by confocal

microscopic analysis of 53BP1 and yH2AX co-localization in the nuclei, a hallmark of DNA damage foci. 100 cells were counted per subjects, and a
total of 10 HCV-infected patients and 10 age-matched HS were studied (six in each group were kinetically analyzed). P values of the DNA damage foci
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0—4 days, followed by DNA integrity analysis by measur-
ing the expression of 8-oxogunine (8-0x0G), a marker for
DNA-DSBs that are caused by excessive oxidative stress>".
As shown in Fig. 2a, b (representative overlaid histogram
and summary data of flow cytometry), resting naive CD4
T cells derived from HCV-infected patients had sig-
nificantly higher expression of 8-oxoG DNA bases com-
pared to HS, indicating an accumulation of DNA lesions
during chronic viral infection. After culturing cells with-
out mitogenic or antigenic stimulation, both HCV and HS
T cells showed increases in the expression of 8-oxoG.
However, the extent of this increase in HCV naive T cells
was less than that in HS. This could be attributed to (i) the
relatively high baseline 8-0xoG level in HCV naive T cells
at day 0, and (ii) the test saturation of 8-oxoG load in
T cells under these culture conditions with oxidative
DNA stress, which could limit the 8-oxyG differences
between HCV and HS T cells at day 4 in culture. In
contrast, memory T cells from HCV and HS exhibited an
overload of 8-oxoG at baseline. After culturing cells
without stimulation, 8-0xoG levels only slightly increased,
although HCV memory T cells exhibited marginally
higher DNA lesions than HS at baseline (day 0) and 4 days

in culture. These data indicate that naive T cells from
HCV patients exhibit oxidative DNA-DSBs that remain
unrepaired during viral infection.

Following genotoxic insult, histone variant H2AX is
recruited to the site of DNA-DSBs and becomes phos-
phorylated at its C-terminal Ser-139 residue to form the
YH2AX complex, which subsequently acts as a docking
site for other mediators or adaptor proteins, such as
53BP1, to form microscopically visible nuclear focus
(DNA damage foci)—a hallmark of DNA damage
response (DDR)*” 2%, To confirm that DNA damage
occurs in T cells during HCV infection, we purified naive
and memory CD4 T cells from HCV™~ subjects and
compared DNA damage foci by examining the co-
localization of YH2AX/53BP1 per nuclei using confocal
microscopy. As shown in Fig. 2c (representative imaging
and summary data of confocal microscopy), the number
of DNA damage foci was significantly higher in the naive
CD4 T cells freshly isolated from HCV patients compared
with the HS. We also observed an increase in DNA
damage foci in memory CD4 T cells derived from HCV
patients versus HS (Supplementary Figure S1B). When
the cells were cultured without stimulation for 4 days, the
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Fig. 3 DNA damage repair ATM signaling pathway in T cells of HCV-infected patients versus age-matched HS. a DNA damage sensor MRN
complex expressions in CD4 T cells. Naive CD4 T cells were isolated from six HCV-infected patients and six age-matched HS, cultured in vitro without
stimulation for 4 days, followed by real-time RT-PCR assay for MER11, RAD50, and NBST mRNA expression. b MRN protein expression detected by
western blot in naive CD4 T cells derived from HCV patients vs. HS. Representative imaging and summary data from multiple subjects are shown. ¢
ATM mRNA expressions in CD4 T cells. Naive CD4 T cells were isolated from the study subjects as indicated, cultured in vitro without stimulation for
4 days, followed by RT-PCR analysis for ATM mRNA level. d, e Flow cytometry and western blot analysis for ATM total and phosphorylated protein
expression in naive CD4 T cells from HCV patients vs. HS. f~h ATM signaling molecule mRNA and protein expressions in CD4 T cells. Naive CD4 T cells
were isolated from the study subjects, cultured in vitro without stimulation for 4 days, followed by RT-PCR analysis for P53, BRCA1, CHK1, and CHK2
mRNA level, western blot assay for their total and/or phosphorylated protein levels. pCHK2 expression was confirmed by flow cytometry analysis
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DNA damage foci increased, and were significantly higher
in the naive CD4 T cells from HCV patients compared
with the HS. These results, in conjunction with the
changes in T-cell frequency and apoptotic death, suggest
that unrepaired DNA damage is associated with T-cell
apoptosis and loss in individuals with chronic HCV
infection, emphasizing the role of DNA damage repair to
secure T-cell survival.

DNA damage sensing and repairing machineries in naive
CD4 T cells from HCV-infected individuals

Accumulation of DNA-DSBs in CD4 T cells from HCV
patients indicates that the DNA damage sensing and
repairing machinery is disrupted. Essential components of
this machinery include DNA damage sensors, such as
MRN complexes (MRE11, RAD50, and NBS1), which
recruit and mediate the DNA repair kinase ATM that can
phosphorylate several downstream checkpoint proteins
(such as p53, BRCA1, Chkl, and Chk2)**7** To investi-
gate the cellular machineries that contribute to the DNA
damage repair, we examined mRNA transcripts and

protein expressions of these DDR molecules in naive CD4
T cells from HCV-infected patients and HS using real-
time RT-PCR and western blotting or flow cytometry. As
shown in Fig. 3a, the mRNA levels of MRN complexes
showed no difference or higher levels of MER11, RAD50,
and NBS1. In parallel, the protein levels of these DNA
damage sensors in naive CD4 T cells were also unchanged
or slightly higher in HCV compared with HS (Fig. 3b).
Intriguingly, although the mRNA level of ATM was
higher (Fig. 3c), its protein level was lower; particularly,
ATM phosphorylation (pATM) was significantly lower in
HCV naive CD4 T cells in the 4-day culture compared to
the HS, as measured by flow cytometry (Fig. 3d) and
western blot (Fig. 3e). Similarly, the mRNA expressions of
ATM signaling molecules, P53, 53BP1, BRCA1, CHK1,
and CHK?2 remained unchanged or even higher in naive
CD4 T cells from HCV patients when compared to the HS
(Fig. 3f). However, pp53 protein was undetectable in
resting naive CD4 T cells without stimulation, whereas
BRCA1 and CHKI total and phosphorylated proteins
remained unchanged (Fig. 3g); CHK2 protein, especially
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pCHK2, was significantly suppressed in HCV T cells
compared to the HS, as demonstrated by western blot and
flow cytometry (Fig. 3h). These results suggest that the
DNA damage sensing machinery may be intact, but the
DNA repair (ATM/CHK2) pathway is inhibited, at the
post-transcriptional levels, especially the phosphorylation
process essential for its activation and function.

Role of HCV in dampening ATM activation and its effects
on DNA damage and cell apoptosis

As chronically HCV-infected patients often have other
co-morbidities that may cause immune dysregulation, we
examined the specific role of HCV in triggering DDR and
promoting cellular senescence or apoptosis. We incubated
naive CD4 T cells with Huh7.5 cells with or without HCV
infection, followed by measuring ATM activation. As
shown in Fig. 4a (immunofluorescence staining of Huh7.5
cells with or without infection by HCV JFH-1 strain),
hepatocytes transfected with HCV RNA at 48 h showed
positive expression of HCV core protein, whereas cells
with mock transfection exhibited negative staining.
Moreover, we detected HCV RNA in the supernatant of
HCV-transfected cells (at 24h as well as 48 h), but not
mock-transfected cells (data not shown). Importantly,
similar to the observations in HCV patients (Fig. 3b),
whereas the total ATM protein expression was not sig-
nificantly decreased, the phosphorylation of ATM was
markedly inhibited in the naive CD4 T cells that were
incubated with HCV*" Huh7.5 cells compared with cells
co-cultured with HCV™ Huh7.5 hepatocytes (Fig. 4b). In
addition, T cells exposed to HCV-expressing hepatocytes

were more apoptotic, as demonstrated by a significant
increase (P=0.0357) in Av/7AAD expression in CD4
T cells exposed to HCV compared with the negative
control (data not shown).

We have previously shown that primary T cells treated
with HCV core protein exhibited a senescent state, as
evidenced by a higher level of the aging marker (-
Galactosidase expression and shortened telomeres®. To
further investigate whether HCV core-treated T cells have
impairment in the DNA damage repair enzyme ATM, we
exposed healthy naive CD4 T cells to HCV core protein,
which is secreted by virally infected hepatocytes and cir-
culates in the peripheral blood of HCV-infected patients
and can dampen T cells through its interaction with the
globulin head of C1q receptor expressed on the surface of
T cells, thus delivering inhibitory signaling®” *°. As shown
in Fig. 4c, compared to the $-gal control, treatment with
HCV core protein for 5 days significantly inhibited the
phosphorylation of ATM, but not total ATM protein
expression, in naive CD4 T cells. In addition, HCV core-
treated T cells exhibited an increased level of YH2AX (a
marker of DNA damage), suggesting that insufficient
pATM is associated with an increased DNA damage in
HCV core-treated T cells.

ATM belongs to the PI3K family, and we have pre-
viously shown that HCV can induce T-cell senescence by
inhibiting the AKT/PI3K pathway’. To further explore the
mechanisms that might be involved in inhibiting ATM
activation, we treated naive CD4 T cells with LY294002 (a
potent PI3K-specific inhibitor) in the presence or absence
of HCV core protein. As shown in Fig. 4d, compared with
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the DMSO-treated control, T cells treated with 20 pM
LY294002 exhibited remarkable inhibition of pATM,
along with decreases in pAKT. Moreover, the cleaved
form of Poly (ADP-ribose) polymerase (PARP), an enzyme
that catalyzes the transfer of ADP-ribose onto target
proteins and plays an important role in DNA repair and
cell survival, was significantly increased in T cells treated
with the PI3K inhibitor. In addition, we assessed the effect
of LY294002 on ATM inhibition in CD4 T cells co-
cultured with HCV'™'~ Huh7.5 cells. As shown in Fig. 4e,
pATM expression in CD4 T cells in the presence of
Huh7.5 hepatocytes without HCV infection was sig-
nificantly inhibited by the PI3K inhibitor. pATM expres-
sion was further inhibited in naive CD4 T cells incubated
with HCV" Huh7.5 cells, especially in the presence of
PI3K inhibitor. These results suggest that HCV (core
protein) can induce T-cell DNA damage that is associated
with impaired ATM via inhibition of the PI3K.

Inhibition of ATM phosphorylation in naive CD4 T-cell
leads to DNA damage and apoptosis

The ATM signaling pathway is pivotal to the main-
tenance of genome integrity and cell survival®®. To test
the functionality of this DNA repair machinery in T-cell
survival, freshly isolated healthy naive (CD4*CD45RO")

T cells were treated with a specific ATM inhibitor
(KU60019, 10 pM) for 48 h, followed by measuring DNA
damage and cell apoptosis or death. As shown in Fig. 5a,
naive T cells exposed to KU60019 showed an inhibition in
ATM, in particular pATM, compared with the DMSO
control. In addition, the phosphorylation of CHK2 pro-
tein, a downstream effector of ATM signaling pathway,
was significantly inhibited by the treatment (Fig. 5b).
Importantly, T cells exposed to the ATM inhibitor
exhibited an elevated YH2AX expression, suggesting an
increase in DNA damage (Fig. 5¢). In addition, T cells
treated with the ATM inhibitor exhibited an increase in
DNA damage foci (YH2AX/53BP1 co-localization) com-
pared with the control (Fig. 5d). Moreover, ATM inhibi-
tion in naive CD4 T cells resulted in considerately
increased T-cell apoptosis and death, as demonstrated by
an increase in Av and 7ADD expression, as well as acti-
vated caspase-3 following the treatment (Fig. 5e). In
essence, an insufficiency of ATM leads to greater DNA
damage and cell apoptotic death, which may necessitate
compensatory homeostatic proliferation and lead to tel-
omere loss and premature senescence, particularly in the
naive T-cell pool, a mechanism that can potentially con-
tribute to the naive T-cell loss and poor immune (vaccine)
responses in chronic HCV infection.
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Reconstitution of ATM in HCV CD4 T cells repairs DNA
damage, survival defect, and cellular functions

Given the critical role of ATM in repairing DNA-DSBs,
we hypothesized that reconstitution of ATM could pro-
tect HCV-derived T cells from DNA damage and restore
the signaling network required for repairing DNA breaks.
To test this, we transfected CD4 T cells derived from
HCV-infected individuals with Flag-His-ATM constructs
or controls, including an empty vector without ATM
insert (Mock), and an ATM mutant (ATM-S1981A) in
which the serine (S) phosphorylation site at residue
number 1981 was substituted by alanine (A), using the
Lonza transfection system. Despite high transfection
efficiency (70%) with GFP transfection by this system,
fluorescence-activated cell sorting analysis revealed
intracellular His-ATM expression in only 20-40% of the
T cells transfected with Flag-His-ATM or control con-
structs (Fig. 6a). Western blotting confirmed an increase
in ATM expression in the wild-type, as well as mutant
ATM-S1981A-transfected T cells (Fig. 6b). Although
ectopic overexpression of ATM had broad biological
consequences, we focused our investigation on the DNA
repair, cell survival, and cell function, by assessing
YH2AX, caspase-3, and IL-2 expression levels as readout.
As shown in Fig. 6¢, compared to mock transfection,
ATM reconstitution reduced YH2AX expression after 48

h, whereas transfection of the non-phosphorylated form
with an ATM-S1981A mutant was unable to restore the
level of DNA repair, indicating the importance of ATM
phosphorylation at serine 1981 in protecting cells from
excessive DNA breaks. In parallel, transfection of wild-
type ATM significantly reduced T-cell apoptosis, whereas
mock- or ATM-S1981A-transfected cells exhibited rela-
tively higher levels of active caspase-3 expression (Fig. 6d),
suggesting that ectopic ATM expression exerts immediate
effects in determining T-cell fate by securing cell survival.
Most importantly, implementing ATM significantly
improved T-cell function, as shown by the increase in IL-
2 expression in ATM-transfected cells, whereas ATM-
S1981A transfection could not induce such an effect
(Fig. 6e). Taken together, these results suggest that
restoring an adequate ATM level in naive CD4 T cells
from chronic HCV infection is sufficient to ameliorate
DNA damage, survival defects, and cell dysfunctions.

Discussion

We and others have previously shown that T cells
derived from patients with chronic viral infections pre-
maturely reach senescence, characterized by the short-
ening of telomeres and expression of aging markers*™®. In
this study, we further demonstrate that homeostatic
remodeling of the T-cell repertoire during HCV infection
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primarily affects the naive T-cell compartment, char-
acterized by an accumulation of DNA damage owing to
insufficient activation of the DNA repair ATM enzyme,
which leads to naive T-cell apoptosis and loss. Indeed,
phosphorylation of ATM in T cells exposed to HCV (core
protein) is inhibited through dampening the PI3K path-
way, resulting in an increase in DNA damage and cell
apoptosis. Moreover, pharmacological inhibition of ATM
phosphorylation leads to more DNA damage and apop-
tosis in naive T cells. Most importantly, reconstitution of
ATM repairs the DNA damage, cell apoptosis, and
functional defects in naive CD4 T cells derived from
HCV-infected patients. Based on these novel findings, we
propose a model (depicted in Fig. 7) where HCV-induced
ATM deficiency leads to accumulation of DNA damage
and cell apoptosis. The excessive T-cell loss necessitates
high homeostatic proliferation and imposes replicative
stress on unprimed naive T cells; this represents a novel
molecular mechanism underlying T-cell senescence in the
setting of chronic viral infection. Importantly, ectopic
overexpression of ATM is necessary and sufficient to
repair the DNA damage, survival defect, and cell dys-
functions in HCV-derived T cells, thus providing a new
strategy to improve immunotherapy and vaccine respon-
ses against human viral diseases.

We and others have observed poor vaccine responses in
the setting of chronic viral (HCV, HIV) infections® % 15719,
but the underlying mechanisms for vaccine failure in
virally infected individuals remain unclear. Data presented
in this study indicate that naive helper T cells in chroni-
cally HCV-infected patients have abnormalities that jeo-
pardize their ability to mount effective immune (vaccine)
responses. Specifically, we demonstrated that naive CD4
T cells have accumulation of damaged DNA and fail to
repair their DNA-DSBs owing to deficiency of the ATM
pathway. Accumulated DNA damage renders HCV-
derived T cells prone to apoptotic death, imposing repli-
cative stress and premature aging on naive T cells. These
findings are important because naive T cells represent the
reserve pool of the immune system, and their survival
critically determines the cellular yield of homeostatic
proliferation, a process that generates new T cells in
response to neo-antigens, including vaccines.

Insufficient activation of ATM would be expected to
affect both unprimed and primed T cells. Indeed, we
observed unrepaired DNA damage and cell apoptosis in
both naive and memory T-cell populations. However,
ongoing antigenic stimulation during chronic viral infec-
tion could drive naive T-cell differentiation and turnover
of antigen-reactive T cells. In this regard, memory T cells
would expand and compromise the size and survival of
naive T cells. Eventually, the entire T-cell pool would be
comprised by antigen-reactive T cells at the expense of
naive T cells. In the setting of chronic viral infection,
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Fig. 7 A novel model of HCV-induced ATM deficiency in T-cell
cycle arrest, DNA damage repair, cell senescence, and apoptosis.
HCV infection triggers a DNA damage response (DDR) in the early
phase via activation of MRN-ATM-CHK2 and P53 signaling pathways in
naive CD4 T cells, prompting cell cycle arrest and allowing for DNA
damage repair; or, if the infection is overwhelming and causes
unrepairable DNA damage, the cell will commit suicide and initiates
programmed cell death (apoptosis). Persistent antigenic and
inflammatory stimulation, however, drives ATM exhaustion and
insufficiency, leading to impaired DNA damage repair and
accumulation of DNA double strain breaks (DSBs), which result in
constant cell apoptosis and naive T-cell loss. Excessive T-cell loss
necessitates high homeostatic proliferation and imposes replicative
stress on unprimed naive T cells, emerging as a novel molecular
mechanism underlying T-cell senescence in the setting of chronic viral
infection. Importantly, ectopic overexpression of ATM is necessary and
sufficient to repair the DNA damage, survival deficit, and cellular
dysfunction in HCV-derived T cells, providing a new strategy to
improve immunotherapy and vaccine responses against human viral
diseases

however, memory T cells could be functionally biased as a
result of chronic antigenic stimulation; as such, we
focused our studies on the T-cell population that has yet
to be recruited for immune responses. With the decrease
in newly generated naive thymic T cells in adults, chronic
infection or inflammation might force the immune system
to restore equilibrium by replicating the available or
existing naive T cells, thereby driving telomere shortening
and senescence in naive T-cell populations. Thus, the
ability to generate immune response to new antigens,
such as HBV vaccine, could be compromised.

ATM has a unique role in lymphocyte biology, as pro-
grammed DNA damage repair is part of the gene rear-
rangement necessary for formation of a highly diverse T-
cell receptor repertoire. Under non-stress conditions,
ATM is inactive and exists in the form of a dimer (like
other PI3Ks). It requires a signal for activation (usually a
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DNA damage signal), signaling through intermolecular
autophosphorylation at ATM residue S1981 and resulting
in the dimer dissociation into monomers>". In our study, a
mutant of S1981A rendered ATM a dominant-negative
protein, triggering more severe DNA damage (yH2AX
expression), cell apoptotic death (Av/7AAD expression),
and cellular dysfunction (IL-2 inhibition)—underscoring
the importance of ATM phosphorylation for its biological
functions. ATM is predominantly localized in the nucleus,
and undergoes activation once the MRN complex senses
and binds to DNA DSB ends, providing a platform for
ATM recruitment and autophosphorylation®” 3, Phos-
phorylation of S1981 also stabilizes ATM at the damaged
DNA sites and recruits more downstream effector pro-
teins to participate in the DDR**, Among the multiple
substrates phosphorylated by ATM is the checkpoint
kinase 2 (CHK2), which is phosphorylated at residue T62
following DSB formation and prevents cells from pro-
gressing from G1 to S phase or, alternatively, leads to cell
apoptosis. The discovery of these DNA damage response
proteins has shed light on the cellular machinery that
contributes to DNA repair and cell homeostasis.
Recently, Li et al.®® identified prematurely aged T cells
with damaged telomeres in patients with rheumatoid
arthritis, resulting from defective activity of the DNA
break sensor MER11A. In patients with chronic HCV
infection, however, we find that the DNA damage sensor
MRN complex is intact in naive T cells. Rather, the DNA
damage repair enzyme ATM is inhibited, at a post-
transcriptional level, by HCV infection. Interestingly, Guo
et al.*® ?” reported that ATM activation in response to
ROS was independent of the MRN complex. ROS-
mediated ATM signaling represses mTORCI signaling
and therefore cell growth and proliferation through acti-
vation of TSC2 (a negative regulator of mTOR) by liver
kinase B1 (also known as STK11) and AMP-dependent
protein kinases®®. ATM engagement of the TSC2/
mTORCI1 signaling pathway can also regulate autop-
hagy®®, and differential localization of ATM is correlated
with activation of distinct downstream signaling path-
ways®’, We have previously reported that T cells treated
with HCV core protein exhibit G1/S cell cycle arrest,
which was associated with the dysregulation of cell cycle
regulatory proteins CDKs/Cyclins and P27"P* *!, Here, we
demonstrate that concomitant with the insufficiency of
ATM activation, the phosphorylation of CHK?2 is defec-
tive in naive T cells from HCV-infected patients. More-
over, pharmacological inhibition of ATM in healthy
T cells also leads to a CHK2 defect, accompanied by a
marked increase in DNA damage and cell apoptosis—
resembling the biological effects characteristic of HCV-
derived naive T cells. These results establish that in
human T cells, CHK2 is targeted by ATM, and that the
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overall defect of this pathway can be attributed to ATM
insufficiency owing to chronic HCV infection.

A typical feature of CD4 T cells in chronically HCV-
infected patients is the shortening of telomeres compared
with age-matched healthy controls™ °. Several mechan-
isms may contribute to this age-associated loss of telo-
meres. Increased proliferative turnover can cause cell
division-induced telomere shortening. In addition, telo-
meric DNA is highly susceptible to DNA damage, even
more so than non-telomeric DNA. Plasmid-inserted
human telomeres accumulate sevenfold higher strand
breakage than control sequences®?. Also, the frequency of
single-strand breaks is several-fold higher in telomeres
than in the bulk genome when cells are treated with
alkylating agents or exposed to oxidative stress*>. In line
with these findings, we have recently found that the
expression of the telomere shelterin TRF2 is significantly
inhibited, at the protein level, in naive CD4 T cells derived
from HCV-infected individuals, which renders the
uncapped telomeres prone to DNA damage (unpublished
observations). Thus, telomere loss in HCV T cells is
triggered by DDR and the inability of timely repair by the
ATM signaling pathway. In addition, we have also dis-
covered that KMLOO1, a telomere-targeting drug, can
induce telomeric DNA damage and T-cell apoptosis by
impairing the ATM pathway (unpublished observations).
Notably, ATM is widely expressed in human T cells at an
extremely high level to ensure integrity of the genomic
DNA in replicating lymphocytes. ATM activation repre-
sents the initiation of DDR, but its inhibition in persis-
tently stimulated T cells indicates insufficiency of this
DNA repair enzyme and cell exhaustion and senescence
in the setting of chronic viral infection. This notion is
supported by our observation in an in vitro stimulated T-
cell system that ATM phosphorylation is increased in the
early phase of KMLOOl-treated T cells (3~6h) and
decreased in persistently treated cells (24~48h), along
with increases in DNA damage, cell apoptosis, and func-
tional impairment (unpublished observations).

In summary, accumulation of DNA damage and failure
to repair the DNA-DSBs owing to deficiency of the ATM-
dependent DNA repair machinery during chronic viral
infection may have broader implications through
impairing diverse cellular functions. As interferon (IFN)-
mediated T-cell apoptotic death has been well-studied in
persistent viral infections***’, this virus-induced DNA
damage-mediated T-cell loss represents a new mechanism
of immune evasion. How HCV induces DNA-DSBs, and
its relationship to the IFN-signaling pathway, are under
further investigation. As counteracting ATM deficiency
may restore T-cell competency during viral infection and
prevent premature immune aging, these studies may
provide new strategies to improve immunotherapy and
vaccine responses against human viral diseases.
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Materials and Methods
Subjects

The study protocol was approved by the institutional
review board (IRB) of East Tennessee State University and
James H. Quillen VA Medical Center (ETSU/VA IRB,
Johnson City, TN, USA). The study subjects were com-
posed of two populations: 148 chronically HCV-infected
individuals and 72 age-matched HS. Written informed
consent was obtained from all participants. HCV patients
were virologically positive for HCV RNA, prior to the
antiviral treatment. Healthy subjects, derived from Phy-
sicians Plasma Alliance, Gray, TN, USA were negative for
HBYV, HCV, and HIV infection.

Cell isolation and culture

PBMCs were isolated from whole blood by Ficoll (GE
Heathcare, Piscataway, NJ, USA) density centrifugation.
Naive and memory CD4" T cells were isolated from
PBMCs using the naive or Memory CD4" T Cell Isolation
Kit and a MidiMACS Separator (Miltenyi Biotec Inc.,
Auburn, CA). The isolated T cells were cultured in RPMI
1640 medium containing 10% FBS (Atlanta Biologicals,
Flowery Branch, GA, USA), 100 IU/ml penicillin and 2
mM L-glutamine (Thermo Scientific, Logan, UT, USA)
without mitogenic stimulation for 4 days at 37 °C and 5%
CO2 atmosphere. Cells were collected at day 0, day 2, or
day 4 for detection of cell apoptosis and DNA damage. To
test the role of pATM in repairing DNA damage and
apoptosis, 10puM pATM inhibitor (KU60019, Abcam,
Cambridge, MA) or dimethyl sulphoxide were added to
the cultures for 48h, followed by apoptosis and DNA
damage analysis. To consolidate the role of HCV in
inhibiting ATM activation, purified naive CD4 T cells
were co-cultured with Huh7.5 cells with or without HCV
infection, or 1pug/ml recombinant HCV core protein
(Virogen, watertown, MA, USA) or control protein -
galactosidase (Virogen), in the presence or absence of 20
pM PI3K inhibitor (LY294002, Sigma) for 4 days, followed
by flow cytometry or Western blot analysis for ATM/
pATM expression, DNA damage, and cell apoptosis.

Flow cytometry

For phenotypic analysis of naive CD4 T cells, PBMCs
were stained with CD4-APC, CD45RA-FITC (BioLegend,
San Diego, CA, USA) antibodies, or isotype controls. To
quantify cell apoptosis, naive or memory cells were pur-
ified, cultured, and collected at indicated days and stained
with Av and 7AAD using BD Pharmingen PE Av Apop-
tosis Detection Kit I (BD Biosciences, San Jose, CA, USA).
For intracellular staining, the cells were fixed and per-
meabilized with Foxp3 Transcription Factor Staining
Buffer Set (eBioscience, San Diego, CA, USA), and stained
with pATM (Ser1981)-PE antibody(BioLegend), ATM
antibody (Abcam), and anti-Rabbit-IgG-Alexa Fluor 488
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(Santa Cruz Biotechnology, Dallas, TX, USA), pCHK2
(Thr68)-PE antibody (eBioscience), 8-oxoguaine-FITC
probe (OxyDNA Assay Kit, EMD Millipore, Billerica,
MA). The stained cells were analyzed on AccuriTM C6
flow cytometer (BD, Franklin Lakes, NJ), and data were
analyzed by FlowJo software (Tree Star, Inc., Ashland,
OR). Isotype control antibodies (eBioscience) and fluor-
escence minus one controls were used to determine the
background levels of staining and adjust multicolor
compensation as gating strategy.

RNA isolation and real-time RT-PCR

Total RNA was extracted from 1.0 x 10° cells with
PureLink RNA Mini Kit (Invitrogen, Carlsbad, CA), and
c¢DNA was synthesized by using High Capacity cDNA
Reverse Transcription Kit (Applied Bio systems, Foster
city, CA) per manufacturer’s instruction. Quantitative
PCR were completed in triplicates following the condi-
tions 95 °C, 10 min and then 95 °C, 15 s; 60 °C, 60 s with 40
cycles. Gene expression was normalized to 18S ribosomal
RNA and expressed as fold changes using the 2 24
method. Primer sequences were shown in Table 1.

Western blotting

Naive CD4 T cells purified from HCV-infected indivi-
duals and HS were lysed on ice in RIPA lysis buffer
(Boston BioProducts Inc, Ashland, MA) in the presence of
protease inhibitors (Thermo Scientific, Rockford, IL). The
protein concentrations were measured by Pierce BCA
protein assay kit (Thermo Scientific). Proteins were
separated by SDS-PAGE, transferred to polyvinylidene
difluoride membranes, which were blocked with 5% non-
fat milk, 0.5% Tween-20 in Tris buffered saline, and
incubated with the pATM (Ser1981) (D6H9), pBRCA1,
pCHK]1, and pCHK2 (Thr68) (C13C1) antibodies and f-
Actin (8H10D10) antibodies (Cell Signaling, Danvers,
MA). Appropriate horseradish peroxide-conjugated sec-
ondary antibodies (Cell Signaling) was then used and
proteins were detected using Amersham ECL Prime
Western Blotting Detection Reagent (GE Healthcare Bio-
Sciences, Pittsburgh, PA). Membranes were stripped and
re-probed with MER11, RAD50, NBS1, BRCA1, ATM
(D2E2), yH2AX, PARP, CHK1, and CHK2 (D9C6) anti-
bodies (Cell Signaling). Protein bands were captured and
quantitatively analyzed by Chemi DocTM MP Imaging
System (Bio-Rad System).

Confocal microscopy

Naive CD4" T cells were isolated and cultured as
described above. Immunofluorescence staining was
performed according to the reported method®’. In
brief, the cells were fixed in 2% paraformaldehyde for
20 min, permeabilized with 0.3% Triton X-100 in PBS
for 10 min, blocked with 5% BSA in PBS for 1h,
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Table 1 Primer sequences

Name of the Primer sequences

amplified genes

ATM F: 5'-TGGATCCAGCTATTTGGTTTGA-3’
R: 5'~GATGAAGAAGATAACAACCAATGTATGAACC-3’
p53 F: 5'—TCAACAAGATGTTTTGCCAACTG-3'
R: 5'~GTAGATGTTCGTCAGTGTCGTGTA-3’
MRET1 F: 5'—CTTGTACGACTGCGAGTGGA-3'
R: 5'=GTCTTTCTCCCTACCCACTT-3"
NBS1 F: 5’ —TTGGTTGCATGCTCTTCITG-3"
R: 5'~CAACTCAGGTTCTTCGTCGG-3'
RAD50 F: 5’ —CTTGGATATGCGAGGACGAT-3’
R: 5'~CGCATTGAAGGTCGAAGACC-3’
BRCA1 F: 5'~GGCTATCCTCTCAGAGTGACA-3'
R: 5'=AGGTCTTGTTTCGTGTAGTC-3"
CHEK1 F: 5'—~GGTGAATATAGTGCTGCTATGTTGACA-3’
R: 5'~CACAGTGAAGGGACAAATAGGTT-3’
CHEK2 F: 5'—~CCCAAGGCTCCTCCTCACA-3'

X

: 5'=TTGAGGTCGGTCAGGAGAGTGA-3’

18S-ribosomal F: 5'—CCTGGATACCGCAGCTAGGA-3'
RNA

0

: 5'—CCCCGTAAGCATAACGCGGCG-3'

and then incubated with rabbit anti-53BP1 antibody
(Cell Signaling) and mouse anti-y-H,AX (Ser-139)
antibody (Biolegend) at 4°C overnight. The cells were
washed with PBS with 0.1% Tween-20 for three times, and
then stained with anti-rabbit IgG-Alexa Fluor 488 and
anti-mouse IgG- Alexa Fluor 555 (Invitrogen) at room
temperature for 1h, washed and mounted with DAPI
Fluoromount-G (SouthernBiotech, Birmingham, AL).
Images were acquired with a confocal laser-scanning
inverted microscope (Leica Confocal, Model TCS sp8,
Germany).

ATM transfection

Purified naive CD4" T cells from HCV patients were
transfected with 2.5pg pcDNA3.1 (a gift from Adam
Antebi*®, Addgene plasmid # 52534), or pcDNA3.1(+)
Flag-His-ATM wt (a gift from Michael Kastan®”, Addgene
plasmid # 31985), or hATMS1981A mutant (a gift from
Michael Kastan®!, Addgene plasmid # 32300), using the
Human T Nucelofector Kit and Nucleofector I Device
(LonzaLonza, Allendale, NJ). 24 h post transfection, GFP
fluorescence was observed under microscope and the GFP
expression level was measured by Flow Cytometry. 48 h
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post transfection, transfection efficiencies were monitored
by flow cytometry measuring the frequency of His" cells.
Ectopic ATM expression was detected by western blot.
Active caspase-3, YH,AX, and IL-2 expressions were
assessed in the His-positive cells by Flow Cytometry.

Statistical analysis

The data were summarized as mean+SEM or median
with interquartile range and analyzed using Prism 7 soft-
ware. Comparisons between two groups were made using
independent Student’s t-test, or paired 7 test, and mul-
tiple comparisons test/least significant difference or
Tukey’s procedure, depending on the ANOVA F test or
by a nonparametric Mann-Whitney U-test. P-
values<0.05, <0.01, or <0.001 were considered to be
statistically significant or very significant, respectively.
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