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Abstract: Eradication of latent human immunodeficiency virus (HIV) infection is a global health
challenge. Reactivation of HIV latency and killing of virus-infected cells, the so-called “kick and kill”
or “shock and kill” approaches, are a popular strategy for HIV cure. While antiretroviral therapy
(ART) halts HIV replication by targeting multiple steps in the HIV life cycle, including viral entry,
integration, replication, and production, it cannot get rid of the occult provirus incorporated into
the host-cell genome. These latent proviruses are replication-competent and can rebound in cases of
ART interruption or cessation. In general, a very small population of cells harbor provirus, serve
as reservoirs in ART-controlled HIV subjects, and are capable of expressing little to no HIV RNA
or proteins. Beyond the canonical resting memory CD4+ T cells, HIV reservoirs also exist within
tissue macrophages, myeloid cells, brain microglial cells, gut epithelial cells, and hematopoietic stem
cells (HSCs). Despite a lack of active viral production, latently HIV-infected subjects continue to
exhibit aberrant cellular signaling and metabolic dysfunction, leading to minor to major cellular and
systemic complications or comorbidities. These include genomic DNA damage; telomere attrition;
mitochondrial dysfunction; premature aging; and lymphocytic, cardiac, renal, hepatic, or pulmonary
dysfunctions. Therefore, the arcane machineries involved in HIV latency and its reversal warrant
further studies to identify the cryptic mechanisms of HIV reservoir formation and clearance. In this
review, we discuss several molecules and signaling pathways, some of which have dual roles in
maintaining or reversing HIV latency and reservoirs, and describe some evolving strategies and
possible approaches to eliminate viral reservoirs and, ultimately, cure/eradicate HIV infection.
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1. Introduction
1.1. HIV Reservoirs, Latency Maintenance, and Clinical Complications

HIV latency is a major problem that has been recognized since the introduction of
combined antiretroviral therapy (ART) to inhibit viral replication and disease progression.
Latently HIV-infected patients on ART may contain as low as one copy of provirus incor-
porated into the genome of host cells [1]. These proviruses remain silent in resting cells
but are replication-competent, resulting in latent HIV reservoirs. To date, the mechanisms
underlying HIV reservoir formation and the cell types involved in establishing HIV latency
are not fully explicit. Recent studies suggest that these latent reservoirs are formed very
early during the acute phase of HIV infection and accumulate over time [2]. Some studies
also identify that latency establishes near the time of ART initiation, and some show a
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reduction of viral reservoir size in HIV-infected adults with early ART initiation [3–8].
Several types of cells, including memory CD4 T cells, dendritic cells, myeloid cells, ep-
ithelial cells, microglia, and even HSCs, have been identified as HIV reservoirs, harboring
provirus [9,10]. The lymphoid tissues are the primary sites of viral replication, and active
and prolonged clinical latency is initiated and maintained in these sites (lymph nodes,
spleen, gut-associated lymphatic tissues), which are also the most active sites during viral
infections given their role in immune-cell maturation/activation, and forming a major
reservoir for HIV latency that has been characterized and discussed profoundly [11–16].

While several reviews have described strategies and methods to eliminate latent HIV
reservoirs, compelling advances in this field are forthcoming. Of note, the classically
described HIV receptor CD4, in conjunction with the coreceptors CCR5 and CXCR4,
remain as canonical cellular receptors for HIV infection in all cell types in humans, with
the exception of epithelial cells and brain astrocytes, which can be infected and harbor
HIV provirus via syncytial fusion without any expression of the CD4 receptor on the cell
surface [10,17–19]. Nevertheless, one major problem in this field is the unavailability of
established cellular marker(s) to identify provirus-harboring reservoir cells. An extensive
study on putative reservoir markers such as CD2, CD20, CD30, and CD32a has been
published before [20]. A recent study identified CD4 T cells with a surface immunoglobulin
marker—CD32a+, which contains a significant percentage (26.8 to 83.3%) of quiescent HIV
proviral DNA [21]. However, another study reported that CD32a is more of an activation
marker that is mainly presented in activated CD4 T cells showing a Th2 phenotype than a
marker for resting CD4 T cells, and is coexpressed with HIV-RNA in activated cells in vitro
and in vivo [22]. CD32a+ cells have distinctive phenotype from CD32a- cells, but activation
markers (HLA-DR+, CD69+, and CD25+) in blood and lymph nodes show no difference in
both viremic and aviremic HIV+ subjects when compared to HIV- subjects [22]. This is just
one example demonstrating the complexity of identifying a resolute and orthodox latent
HIV reservoir marker.

HIV latency in the era of ART is characterized by the existence of viral reservoirs that
prevent HIV eradication and likely hinder complete immune reconstitution [23,24]. Latently
HIV-infected cells generally do not actively produce viral particles under effective ART
suppression; however, ART cessation predictably allows for rapid viral rebound [1,25–27].
Of note, active HIV production is not required to induce negative cellular effects, and the
latent infection triggers numerous alterations in cellular signaling and metabolic dysfunc-
tions, and thus leads to persistent inflammation and premature immune aging [28,29]. In
particular, patients with latent HIV infection on ART exhibit both immunologic scarring and
low-grade inflammation, inducing an inflammaging phenotype characterized by aberrant
DNA damage and repair signaling, shortened telomeres, genomic instability, impaired mito-
chondrial functions, poor proliferative capacity, and blunted vaccine responses [28–43]. This
inflammaging in the setting of ART-controlled, latent HIV infection exposes the immune sys-
tem to unique challenges that lead to profound T cell exhaustion and senescence, a situation
that drives increased infections, cancers, cardiovascular diseases, and neurodegeneration,
similar to what is observed in the elderly [44,45]. Indeed, people living with HIV while on
ART are prone to chronic renal disease, lung disease, cardiovascular complications, and
mental disorders such as schizophrenia, depression, and anxiety [46–50]. This population
also exhibits an increase in abnormalities associated with metabolic disorders, such as
increased rates of obesity, high body mass index (BMI), and waist–hip ratios (WHR) [48,51].
In young children with HIV on ART, a fragile mitochondrial DNA (mtDNA) haplogroup H
can lead to decreased mtDNA content, impaired mitochondrial markers, reduced complex
IV activities, and overall growth retardation [52,53]. Mitochondrial dysfunction can also
induce alterations in mitochondrial membrane potential, reactive oxygen species (ROS)
accumulation, oxidative DNA damage, and aggregation of acetyl CoA, resulting in altered
insulin resistance, lipid profiling, and hepatic steatosis [28,53–56]. Therefore, it is fundamen-
tally important and clinically significant to identify, reverse, and eradicate HIV reservoirs in
individuals with ART-controlled, latent HIV infection.
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Eliminating HIV reservoirs and achieving HIV cure is very challenging. First, the host
immune system cannot recognize and clear latently HIV-infected cells in the absence of
detectable viral RNA or proteins. Second, there are no specific or widely accepted cellular
latency markers (excluding the putative CD2, CD20, CD30, CD32a, and some immune
checkpoint molecules) to target and clear the reservoirs in ART-controlled HIV subjects [20].
Third, while latency-reversal agents (LRAs) have been used to reactivate latently infected
cells, clearance of these reactivated HIV-harboring cells is also very difficult to assess
because of limited information on the markers of latency reversal; the regions/sites of
provirus incorporation/integration within the cellular genome; and the role of a broad
range of cells, tissues, or organs harboring these HIV reservoirs, which are usually immune-
privileged and subject to immune evasion. The information available on integration sites
varies highly between cell types, the techniques used to examine these data, and other
experimental parameters. We currently do not have concrete information regarding the
appropriate or canonical number(s) of integration sites. For instance, a total of 40,569
integration sites were revealed in Jurkat cells using a pyrosequencing technique [57].
Another study identified 6,719 integration sites in CD4 T cells in a study that included 13
individuals [58]. Genomic DNA sequencing identified the numbers of integration sites to be
approximately 667–754, 589–649, and 577 in U1, ACH-2, and J1.1 cell lines, respectively [59].
Other studies identified integration sites in up to 2,661 locations in an in vitro primary CD4
T cell infection model, where integration favored active host transcription units, but with
different integration preferences in activated and resting CD4 T cell types [60]. Integration
sites also vary depending on treatments and stimulation conditions. For instance, using an
inverse PCR and cloning technique, a CCL19-treated latency model in CD4 T cells revealed
247 integration sites, hosted by 85 genes; whereas PHA/IL-2 activated CD4 T cells had
432 integration sites hosted by 152 genes; and unactivated CD4 T cells had 133 integration
sites hosted by 62 genes [61]. Another study carried out in CD4 T cells derived from
3 HIV patients identified 100 integration sites, of which 84 harbored a defective proviral
sequence [62]. Given the arduous methodology and information about identifying the
appropriate integration sites, eliminating HIV-1 latency based on integration sites appears
to be very challenging.

Strategies to reverse HIV latency and potential techniques to “kick and kill” the
reactivated, latently HIV-infected cells via inducing cellular apoptotic components have
been reviewed previously [63]. To understand the broader aspect of latency eradication
for an HIV cure, an extensive investigation of latency reversal approaches, as well as
cell survival and apoptotic pathways under both latent and reactivated conditions, is an
unmet medical need. Therefore, in this review we focus on discussing the strategies and
approaches needed to identify poorly understood latency-reversal molecules/pathways
and the mechanisms directly or indirectly involved in latency reversal and latent cell
survival and/or longevity. The cellular components/mechanisms discussed here have
shown involvement in either latency perseverance and/or reversal that could be the focus
of future studies to unveil the complex mysteries of HIV latency.

1.2. HIV Latency and Reversal Approaches

In CD4 T cells, HIV reservoirs may be established due to either direct infection
of activated memory T cells or progression of infected naïve or effector CD4+ T cells
to a memory/resting T cell phenotype [1,64]. In several in vitro models of HIV latency,
investigators have employed conditional culture media containing antibodies and cytokines
(anti-IL-4 and anti-IL-12 antibodies, TGFβ1) and T cell receptor (TCR) stimuli (anti-CD3
and anti-CD28) to enhance naïve or effector T cell progression to memory T cells [30,65,66].
In these model systems, memory T cells are infected by HIV (such as the HIV-1NL4-3 strain)
and then treated with or without ART and LRAs to study latency reversal and associated G-
quadruplex-controlled gene expression or DNA damage response [30,65,66]. In this latent
primary memory T cell model, researchers reported a higher degree of viral reactivation by
agents such as bryostatin (62%) and ingenol 3, 20-dibenzoate (127%) relative to anti-CD3
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and anti-CD28 stimulation, which were reduced to 15% and 22% when the cells were
treated by SAHA and PAM3CSK4, respectively [65]. Meanwhile, treatment with PMA or
prostratin, which directly activates protein kinase C, TNFα activating NF-κB, and the use of
valproic acid to inhibit histone deacetylases (HDACs) failed to induce latency reactivation
or viral gene expression [66]. Stimulation of calcium influx only using ionomycine had no
effects on viral reactivation, but when ionomycine and PMA were used together, a minor
reactivation (4%) was observed [66]. Some studies have shown that different cell types
and LRA combination play a big role in triggering an effective viral reactivation [66,67].
The alcohol antagonist drug disulfiram can reactivate latency only in cell lines of myeloid
origin (U1, THP89, and CHME5) but not in T-lymphoid cell lines (J-Lat 9.2, J-Lat A1 and
A2); and a combination of romidepsin and disulfiram showed only minimal effects in
reversing latency, both ex vivo and in vivo [67]. Not only cell types but also different
mechanisms come to play in affecting the degree of latency reversion. In both Jurkat cell
line (2D10) and in the primary CD4 T cellular model of HIV latency, a triple combination
of three agents, procyanidin trimer C1 (a MAPK agonist), kansui (a PKC agonist), and
JQ1 (a BET bromodomain inhibitor and pTEFb activator) successfully reactivated latency,
which failed when they were used in similar concentrations individually [68]. Notably,
procyanidin trimer C1 and kansui are plant derivatives [68]. Other approaches to reverse
HIV latency include using CpG oligodeoxynucleotides, which activate toll-like receptor
9 (TLR-9), or long noncoding RNA (lncRNA) uc002yug.2, which affects Runt-related
transcription factors RUNX1b/c and viral Tat gene expressions [69,70]. In HIV and simian
immunodeficiency virus (SIV) latency-reversal studies in animal models, an IL-15 agonist
(known as N-803) can robustly reactivate the virus (SIV/HIV) in ART-treated macaques
and BLT (bone marrow–liver–thymus) humanized mice only under a CD8 T cell-depleted
condition [71]. However, co-culture of human CD8+ T cells and latently infected primary
CD4+ T cells under ART treatment eventually blocked the in vitro latency-reversal effects
of an IL-15 agonist and potent latency-reversal agent N-803 [71]. In addition, activation of
the noncanonical NF-κB signaling pathway using the apoptosis inducer AZD5582 induced
HIV and SIV RNA expression in ART-suppressed BLT mice and macaques, respectively,
affecting a wide range of tissues and cells (lymph nodes, thymus, bone marrow, liver,
and lungs) [72].

It is becoming clear that HIV elimination by targeting the latent proviral reservoirs
is an attractive but very challenging task to achieve because of the poor understanding
of the mechanisms underlying HIV reservoir/latency establishment, maintenance, and
reversal. For example, follicular helper T cells (TFH) expressing high levels of programmed
cell death-1 (PD-1) are involved in HIV production during the acute phase of HIV infection,
but the same population can also evolve into latent HIV reservoirs during the chronic phase
of HIV infection following ART treatment [73–75]. PD-1 blockade using a monoclonal
antibody (pembrolizumab) followed by the treatment with the LRA bryostatin induces the
production of HIV-1 [76]. Surprisingly, conventional methods of T cell activation using
TCR (anti-CD3, CD28), cytokine (IL-2, IL-1R, IL-15R, IL-7R, TNF-α), and mitogen (PMA,
prostratin) stimulations are not required in the setting of PD-1 blockade in conjunction
with the prostratin treatment alone [66,71,76].

Monocyte-derived dendritic cells (MDCs) present antigens—either HIV-1 antigens or
cytomegalovirus (CMV) antigens—to autologous latent CD4 T cells containing a replication-
competent provirus to facilitate HIV-1 latency reversal [77]. These MDCs also induce
cytotoxic T lymphocyte functions to kill the exposed targets/reversing cells [77]. The
blockade of the CD40L/CD40 signaling pathway significantly reduces the phenomenon of
latency reversal [77]. Cell–cell interactions between monocytes/dendritic cells and latently
HIV-infected T cells are crucial in reversing latency. In contrast, a post-activation T cell
latency model in contact with monocyte and anti-CD3 stimulation showed a reduction in
virus expression [78]. Importantly, it has been reported that a preactivation latency model
with pretreatment by chemokine ligand CCL19 in the presence of monocytes and anti-CD3
stimulation showed an increased viral activation levels, and it subsequently correlated with
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a reduction in frequencies of HIV DNA in the preactivation model, which was opposite in
case of the postactivation latency model [78,79]. A previous study indicated that CCL19-
treated resting CD4 T cells show an increased stability of HIV integrase, which allows
subsequent integration and latency establishment, and this process depends upon functions
of NFκB binding sites, Pin1, and HIV-LTR region [61]. In addition, deletion of NFκB binding
sites and the HIV-LTR region showed no integration of HIV genome in CCL19-treated CD4
T cells, and inhibitors of PI3K and Ras/Raf/Mitogen-activated protein kinase/ERK kinase
(MEK)/ERK signaling pathways restricted the HIV integration [61]. It should be noted
that HIV-infected and proliferating T cells are killed at a significantly high rate during
this activation process, further supporting the importance of investigating cell death and
survival pathways, including some crucial biochemical ligands, in these models [78].

The sensing of the viral ssRNA genome by endosomal Toll-like receptors (TLRs),
specifically TLR8, but not TLR7 or TLR9, promoted T cell differentiation to Th7 and Th17,
increased cytokine production, enhanced CD4 T cell activation, and reversed latency in
patient-derived T cells under ART treatment [80]. Thus, a system with co-culture of latent
HIV reservoir cells with varieties of purified cell surface proteins, cytokine receptors, and
GPCRs may be useful in understanding latency reversal. This co-culture approach should
explore a wide range of cells and tissue types. This may provide important insights into
the mystery of HIV latency, its maintenance, and reversal.

Notably, the data on latency reversal using LRAs are somewhat controversial and not
always consistent, especially for different types of reservoir cell populations [81]. In CD4 T
cells, latency reversal varies in each subset, such as naive cells (TNA), stem cell memory
(TSCM), central memory (TCM), transitional memory (TTM), effector memory (TEM), and
terminally differentiated cells (TTD), likely due to the intrinsic differences between these
cell populations. For example, the use of romidepsin and ingenol appears to be one of the
more robust LRA combinations to increase latency reversal and produce HIV particles,
but this combination is not uniformly effective for all T cell subtypes [81]. TSCM cells are
highly resistant to latency reversal by LRAs, except for treatment by a combination of
panobinostat and Bryostatin-1 [81]. A canonical B lymphocyte antigen, CD20, is dimly
expressed in CD4 T cells from HIV patients, which exhibit high activation and a memory
phenotype. The expression of HIV-RNA is significantly higher in CD20+ CD4 T cells
in both ART- suppressed and viremic patients [82]. In patients on ART, the use of the
monoclonal antibody (mAb) rituximab against CD20 induces latent reservoir killing in
combination with LRA [82]. Therefore, further studies of the distinct roles of these agents
(LRAs, mAbs) that can focus on cell-surface markers, receptors, and proteins involved in
cell-cycle regulation, latency maintenance, and reactivation could result in a breakthrough
in HIV latency reversal. Figure 1 illustrates potential pathways and mediators involved in
regulating HIV reservoir and latency maintenance, reactivation, and reversal.
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Figure 1. A model depicting the dual/mixed roles of signaling molecules/pathways involved in the maintenance/upkeep 
and/or reversal of HIV latency. Some of these molecules/pathways show effects in both reversion and/or upkeep, depend-
ing on the upstream/downstream molecules involved and compounds, agents, and molecules used during cell cul-
ture/stimulation conditions. Targeting these regulatory molecules/pathways with various agents, drugs, vaccines, or an-
tibodies may lead to new therapeutics for viral reactivation and latency reversal, or perhaps even upkeep/maintenance. 
In addition, manipulating these individual effectors at the genetic or epigenetic level may also affect either latency reversal 
or maintenance. Components associated with effector protein family or signaling cascades such as JAK/STAT and TOX 
can play dual roles. Understanding the roles of these effectors, as well as their working conditions, may facilitate targeting 
those molecules/pathways to cure HIV. 

2. HIV Latency and Potential Agents for Reversal 
2.1. TOX in HIV Latency 

Thymocyte selection-associated high-mobility group box (TOX) is an important 
player in T cell differentiation due to the presence of an adjacent lysine-rich region that 
may serve as a nuclear localization signal (NLS), facilitating TOX–DNA interactions and 
protein–protein interactions. The TOX gene family comprises four major isoforms (TOX1, 
TOX2, TOX3, and TOX4) in different chromosomal loci. TOX1 regulates immune differ-
entiation, TOX2 regulates natural killer (NK) cells and is a DNA-binding transcription 
factor that functions in proximity to RNA polymerase II, TOX3 prevents neuronal death, 
and TOX4 is involved in the process of DNA damage repair and cell-cycle progression 
from mitosis to interphase [83–90]. Extremely high expression of TOX1 has been observed 
in microarray analysis of thymic transcripts in CD4+ CD8+ double-positive (DP) thymo-
cytes [83]. This finding indicates the importance of TOX in immune cell differentiation. 
Furthermore, CD4 T cells, NK cells, and lymph nodes express high levels of TOX1. Failure 
of T cell and NK cell development and dysfunction of the transcription factor FOXP3 reg-
ulated gene expressions are observed in the absence of TOX1, further demonstrating its 
role in lymphocyte differentiation and functions [85]. Additionally, TOX is also signifi-
cantly upregulated during tumor generation and progression [86]. A direct interaction 
between platinated DNA and TOX4 is required for DNA repair in cancer when platinating 
anticancer drugs, such as cisplatin, trigger DDR [88]. Surprisingly, on the other hand, 
some reports also suggest that TOX actually inhibits DNA repair by directly binding to 
KU70/80 and suppressing nonhomologous end joining (NHEJ) repair in T cell acute lym-
phoblastic leukemia (T-ALL), and when TOX was stably knocked down, it elevated NHEJ 

Figure 1. A model depicting the dual/mixed roles of signaling molecules/pathways involved in the maintenance/upkeep
and/or reversal of HIV latency. Some of these molecules/pathways show effects in both reversion and/or upkeep,
depending on the upstream/downstream molecules involved and compounds, agents, and molecules used during cell
culture/stimulation conditions. Targeting these regulatory molecules/pathways with various agents, drugs, vaccines, or
antibodies may lead to new therapeutics for viral reactivation and latency reversal, or perhaps even upkeep/maintenance.
In addition, manipulating these individual effectors at the genetic or epigenetic level may also affect either latency reversal
or maintenance. Components associated with effector protein family or signaling cascades such as JAK/STAT and TOX can
play dual roles. Understanding the roles of these effectors, as well as their working conditions, may facilitate targeting those
molecules/pathways to cure HIV.

2. HIV Latency and Potential Agents for Reversal
2.1. TOX in HIV Latency

Thymocyte selection-associated high-mobility group box (TOX) is an important player
in T cell differentiation due to the presence of an adjacent lysine-rich region that may serve
as a nuclear localization signal (NLS), facilitating TOX–DNA interactions and protein–
protein interactions. The TOX gene family comprises four major isoforms (TOX1, TOX2,
TOX3, and TOX4) in different chromosomal loci. TOX1 regulates immune differentiation,
TOX2 regulates natural killer (NK) cells and is a DNA-binding transcription factor that
functions in proximity to RNA polymerase II, TOX3 prevents neuronal death, and TOX4 is
involved in the process of DNA damage repair and cell-cycle progression from mitosis to
interphase [83–90]. Extremely high expression of TOX1 has been observed in microarray
analysis of thymic transcripts in CD4+ CD8+ double-positive (DP) thymocytes [83]. This
finding indicates the importance of TOX in immune cell differentiation. Furthermore,
CD4 T cells, NK cells, and lymph nodes express high levels of TOX1. Failure of T cell
and NK cell development and dysfunction of the transcription factor FOXP3 regulated
gene expressions are observed in the absence of TOX1, further demonstrating its role
in lymphocyte differentiation and functions [85]. Additionally, TOX is also significantly
upregulated during tumor generation and progression [86]. A direct interaction between
platinated DNA and TOX4 is required for DNA repair in cancer when platinating anticancer
drugs, such as cisplatin, trigger DDR [88]. Surprisingly, on the other hand, some reports
also suggest that TOX actually inhibits DNA repair by directly binding to KU70/80 and
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suppressing nonhomologous end joining (NHEJ) repair in T cell acute lymphoblastic
leukemia (T-ALL), and when TOX was stably knocked down, it elevated NHEJ repair
during DNA double-stranded breaks (DSB). TOX mutants lacking the NLS and high-
mobility group (HMG) domain did not alter the NHEJ repair because NLS and HMG
directly bind to KU70/80 via HMG domain [91]. These findings suggest the complexity
and importance of TOX overall.

A significant decrease in HIV infectivity has been observed during an interplay of
TOX4 and its interaction with the PWWP (Pro-Trp-Trp-Pro motif) interacting region (PIR)
of a RNA binding protein and a splicing cofactor NOVA1 [92]. The PIR region of NOVA1
and the PIR region of TOX4 in TOX4 HMG domain interact with the PWWP domain
of Lens epithelium-derived growth factor (LEDGF/p75), and when all three proteins
(TOX4, NOVA1, and LEDGF) are localized in the nucleus and attached to the chromatin,
they ultimately and specifically decrease HIV infectivity, but not murine leukemia virus
(MLV) infectivity [92]. TOX and its association with high-mobility group box protein 1
(HMGB1) has been shown to play a role in HIV latency maintenance in dendritic cells
via crosstalk with NK cells [93]. In epithelial cells, HMGB1 represses HIV replication by
inhibiting long terminal repeat (LTR)-mediated transcription of the virion [94]. In contrast,
the interaction between HMGB1 and TLR ligands is known to reverse HIV latency in
chronically infected U-1 cells in the presence of bacterial components, such as flagellin,
bacterial lipopolysaccharides (LPS), and CpG DNA oligos [95]. Importantly, TOX can bind
to DNA in a sequence-independent manner to control transcription of a set of genes, such
as CCR7, SELL, IL7R, NFAT5, LY6C1, CD38, CTLA4, LAG3, PDCD1, and many other genes
associated with T cell longevity and maturation [96,97]. Thus, the dual role of the HMGB1
protein family and the widespread influence of TOX warrants a thorough investigation in
order to elucidate their role in HIV latency maintenance and reversal (Figure 2). In a broader
sense, TOX is transcriptionally, epigenetically, metabolically, and biochemically involved in
T cell longevity, maturity, exhaustion, and survival. So far, there are no reports on specific
compounds that can target TOX protein for HIV latency reversal. In silico analysis and
molecular docking techniques identified a total of 140 compounds that bind the HMG box
domain of the TOX protein, by virtual screening of 7.6 million agents from the ZINC15
database (118 identified) and screening of 200,000 other small molecules (22 identified) [98].
These 140 compounds were tested in vitro in a TOX-dependent Hut7b cell line model
of cutaneous T cell lymphoma (CTCL), and 18 molecules were shown to inhibit TOX in
both a TOX-high model (Hut78, SZ4, Jurkat cell lines) and a TOX-low model (K562, U937,
and Mac2A) [98]. Antibodies and compounds that target HMG box have been reviewed
in detail elsewhere, such as Anti-HMGB1 m2G7, acetylcholine, P5779, and resveratrol,
which inhibit the signaling pathways associated with HMGB1 and TLR4 signaling [99–101].
Moreover, other HMG box protein-binding molecules, such as the receptor for advanced
glycation products (RAGE), revealed a link between HIV infection and TLR4 signaling,
and the use of RAGE/HMGB1 inhibitors such as FPS-ZM1 in latency study has already
been evaluated [102–105]. Some of these molecules are potential candidates for future
studies on HMG box protein and TOX-mediated HIV latency reversion or upkeep. Thus,
mechanistic studies of TOX family proteins and their interacting components (ranging
from chemicals compounds, antibodies, and RNA–DNA to protein–protein interactions)
will help to understand the processes of immune-cell differentiation in long-lived, latently
HIV-infected populations.
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Figure 2. Dual role of HMGB1 in HIV latency. HMGB1 protein not only helps maintain viral latency
in epithelial cells and dendritic cells, but also helps reverse HIV latency in U-1 monocytes. This
reversal is associated with TLR interaction with bacteria-derived molecules (flagellin, LPS, and
CpG oligos) that play a major role in HMGB1-associated reversal, suggesting the importance of
foreign (bacterial) components in HIV reversal. However, as an indication of a dual role of HMGB1
protein family, latency is maintained and its reversion is prevented through the inhibition of HIV-1
LTR-mediated transcription and hacking the natural killer (NK) cells and dendritic cell (DC) crosstalk
in latent epithelial cells and dendritic cells, respectively.

2.2. Protein Kinases in HIV Latency

Protein kinases and their roles in HIV latency/reservoir maintenance/reversal have
been described previously [10,106]. A recent study using 418 structurally diverse, cell-
permeable, and medicinally active kinase inhibitors in a latent cell line model showed that
control of kinase activity can affect a wide range of cellular pathways or signaling cascades
and block HIV-1 latency reversal [107]. One such multikinase inhibitor, midostaurin, plays
a dual role by activating latency reversal and blocking viral replication or reversal in the
presence or absence of SAM domain and HD domain-containing protein 1 (SAMDH1),
respectively [108,109]. Kinome profiling recognizes the contribution of PIM-1 kinase in
latent HIV infection and reactivation in T cell lines, as well as in primary CD4 T cells [110].
In both models, HIV reactivation is largely affected following inhibition or knockdown of
PIM-1 by the PIM-1 inhibitor IV (PIMi IV) or PIM-1 specific shRNAs, respectively [110].
Derivatives of the compound benzolactam promote apoptosis in ACH-2 and J-lat cells
via a protein kinase C (PKC)-induced latency-reversal pathway, and one such derivative
(BL-V8-310) was found to have high LRA activity that also reduced cytotoxic cytokine
secretion [111]. These studies reveal the prevailing importance of protein kinases in HIV-1
reservoir/latency maintenance and/or reversal. The individual kinase signaling pathways
that are affected during HIV latency reversal have been described previously [107].

The mammalian target of rapamycin (mTOR) protein is a serine/threonine protein
kinase that belongs to the PI3K-related kinase family and is associated with a wide range
of cellular processes such as cell proliferation, motility, growth, and survival, as well as
protein synthesis and gene transcription. The interactions between dendritic cells and T
cells through cell surface receptors/ligands, which activate PI3K-Akt-mTOR signaling by
triggering dephosphorylation of proteins downstream of the Akt signaling pathway [112],
play an important role in HIV latency reversal. However, such activation does not increase
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the expression/activity of nuclear transcription factors, such as NF-κB. Even blockade
of c-Fos and c-Jun transcription factors, which directly bind to HIV-1 LTR promoter re-
gions, does not affect dendritic cell contact-mediated latency reversal [112]. Also, HIV
Tat drives latent provirus to an active virus-producing state by recruiting pTEFb complex
and interacting with the viral mRNA hairpin in the HIV promoter region [113]. Cyclin T1
and CDK9 form the pTEFb protein complex to act with Tat as a cofactor for Tat-mediated
transcription [114]. The CDK9 partner, cyclin T1, specifically enhances binding of Tat
protein in the trans-activation response element (TAR) RNA stem loop structure [115–117].
The 42 kDa kinase CDK9, when mutated/inhibited, blocks Tat transactivation without ex-
hibiting any effects in the overall T cell activation, which proves that CDK9 kinase activity
is essential for Tat activation, which subsequently affects pTEFb recruitment and TAR RNA
association [117–122]. Moreover, the amount of CDK9 phosphorylation and kinase activity
can have direct effects on Tat association, and the degree of latency establishment; also,
site-directed mutations within different locations within Tat protein residues revealed the
importance of certain sites in the CDK9-Tat interplay in a crystallized model and in silico
analysis of Tat-CDK9-Cyclin T complex [123,124]. The Tat inhibitor didehydro-Cortistatin
A (dCA) can prevent the HIV transcription by blocking the assembly of Tat in HIV pro-
moter with specific transcription factors and RNA polymerase II (RNAPII)-associated
proteins, preventing the assembly of the transcription initiation complex, which eventually
drives the cell toward a latent state (Figure 3) [113]. However, suppressing the multifunc-
tional mTOR protein activity using mTOR inhibitors minimizes latency reversal in both a
Tat-dependent and a Tat-independent manner by blocking CDK9 phosphorylation [114],
stressing the importance of mTOR in latency. Another transcriptional regulatory factor,
KAP1, is critical for the reactivation of HIV latency, which recruits CDK9 and interacts
with the proviral promoter region allowing viral transcription [125]. Surprisingly, HIV-host
transcription mechanisms have developed a bypass machinery to avoid KAP1-mediated
activation in order to reduce the magnitude of virus production and latency reactiva-
tion [125]. Investigating the interplay between CDK9, KAP1, mTOR, and Tat may enhance
our understanding of the HIV latency.
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didehydro-cortistatin A (dCA). When RNAPII becomes unable to interact with the HIV mRNA hairpin loop, the latency
reversal is halted. A thorough investigation of the roles of individual viral proteins in HIV latency reversal is thus very
important for understanding their critical role in HIV cure.
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2.3. JAK/STAT Pathway in HIV Latency

A widely studied kinase cascade—the Janus kinase (JAK) signal transducer and acti-
vator of transcription (STAT) pathway (Figure 1)—has an important role in immune-cell
activation, polarization, cytokine signaling, innate and adaptive immune responses, and
autoimmune disease development [126–129]. The function of JAK/STAT in maintain-
ing CD4 T cell progression has been reviewed previously [126]. Since latent reservoirs
largely comprise CD4+ helper T cells, which have dual roles in acute and chronic HIV
infection, investigating the role of the JAK/STAT pathway in establishing and maintaining
the HIV reservoir in helper T cells is essential for increasing the understanding of their
reversal [73–75,126–128]. The activation of JAK/STAT and the central regulator mTOR
pathways inhibit HIV reactivation and prevent the production of virus particles from a
latent state. However, inhibition of the JAK/STAT pathway promotes HIV-1 reversion [130].
In contrast, when JAK is inhibited using JAK inhibitors, such as tofacitinib and ruxoli-
tinib, inhibition of viral production is observed in HIV reservoirs via suppression of an
IL-15-mediated viral reactivation pathway [131,132]. These studies highlight the dual and
complex role of the JAK/STAT pathway in HIV latency and reversal (Figure 1), and present
this molecular pathway as a mechanism that warrants further investigation. STAT plays an
important role in HIV development independent of the infection status (acute or chronic),
and a use of benzotriazoles reactivates HIV latency by preventing a negative feedback loop
carried out by SUMO2/3 (affecting phosphorylated STAT5), which sustained the STAT5
phosphorylation and its active form [133–135]. In addition, HIV-1 expression was restricted
in U-1 latent cell lines following a heterodimer complex formation between p50 (viral
promoter binding protein) and naturally occurring C-terminally truncated STAT5 [136].
The availability of STAT in its active form is important for latency reversion. On the other
hand, STAT3 inhibitor 5,15-DPP at 50 and 500 nM has been shown to promote HIV-1
transmission and reversion when compared to 5 nM and no treatment using an envelope
defective mutant HIV strain [130,137]. However, the STAT1 inhibitor fludarabine was
shown to block IL-6 and HIV-1 interplay, reducing the monocyte migration and damage in
a recent study [138]. Phosphorylation of STAT 1, 3, and 5 by IFN-α, but not others (IFN-β,
ω, ε, λ1, and λ3) was successful in reversing HIV latency using in vitro cell models, as well
as in CD4 T cells derived from patients undergoing ART [139]. The study of specific viral
components in relation to the JAK/STAT pathway is essential to identify new targets for
HIV latency reversal. For example, the viral accessory protein Vif is directly involved in the
degradation of the JAK/STAT pathway [140]. Vif interacts with STAT1 and STAT3, but not
STAT2, and plays a critical role in the prevention of the antiviral effects of Type-1 IFN-α
signaling [140]. Therefore, the roles and mechanistic effects of LRAs, protein interactions,
IFN activities, and cytokine signaling on the JAK/STAT pathway and on viral proteins
should be investigated in detail in order to understand their potentials as molecular targets
in HIV latency maintenance and/or reversal.

2.4. Apoptotic Proteins in HIV Latency

Productive viral infection, latency establishment, and latency reversion affect cellular
metabolism. Cellular metabolism is hijacked by HIV-1 and changes in antioxidation, iron
metabolism, and iron import are observed during latency transitions, while oxidative stress
is increased and antioxidant response is upregulated during latency reversion and also
during productive in vitro and in vivo infections [141]. Drugs increasing oxidative stress
or iron content and an increase in antioxidant gene expression resulted in reactivation
of latency, causing degradation of promyelocytic leukemia protein nuclear bodies [141].
Another drug, auranofin, which is used to treat rheumatoid arthritis, had an impact on
the latent viral reservoir by reducing the number of the integrated viral DNA in HIV
patients under ART [142]. Partial inhibition of glycolysis using 2-deoxy glucose blocked
HIV-1 infection, decreased cell viability of preinfected cells, and most importantly, avoided
latency reversion in CD4 T cells obtained from HIV patients under ART [143]. Uninfected
and HIV-infected macrophages use fatty acid and glucose as primary sources of energy,
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however, latent macrophages used glutamine/glutamate as a major source of energy, and
blocking the glutamine, glutamate, and alpha-ketoglutarate pathways killed latent HIV-
infected macrophages [144]. Viral infections alter, hack, and reprogram host metabolism
regularly, as discussed before [145,146]. Thus, there is a strong connection between latency
upkeep/reversion and metabolic pathways, agents, drugs, etc.

Viral proteins such as Nef, Tat, Vpu, GP120, and Vpr have been shown to promote or
inhibit cell apoptosis [147]. Many of the differential regulatory effects of these proteins are
dependent upon the phase of HIV in infected cells. For instance, many of these proteins
are anti-apoptotic during acute infection to enable persistent infection, but may transition
to pro-apoptotic in the process of establishing chronic infection by inducing bystander
apoptosis. The role of the envelope and protease proteins in activating apoptosis has been
reviewed elsewhere [63,147]. Intriguingly, some viral proteins can have dual roles, with
both pro- and anti-apoptotic effects [63,147]. Downregulation of pro-apoptotic proteins
and/or upregulation of anti-apoptotic proteins are key to escaping apoptosis, and thus
favor survival of latent cells. For example, Debio 1143 is an inhibitor of anti-apoptotic
proteins that activates HIV transcription via NF-κB signaling by degrading BIRC2 protein
that mediates anti-apoptotic effects on latently HIV-infected cells [148]. Figure 4 illustrates
how Debio 1143 can reverse HIV-1 latency in resting CD4 T cells derived from peripheral
blood mononuclear cells (PBMCs) of HIV patients and humanized BLT mice on ART
treatment [148]. On the other hand, Debio 1143, in combination with an anti-PD1 mAb,
exhibits a significant PD-1 blockade-mediated HIV reduction in all tissues (spleen, lymph
nodes, liver, lungs, and thymic organoids) in BLT mice [149]. Enhanced expression of
the anti-apoptotic protein BIRC5 and its upstream regulator OX40 in productively and
latently-infected CD4 T cells promotes HIV-infected cell survival [150], whereas inhibition
of these molecules enhances HIV-infected cell death [150].
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Figure 4. Inhibition of anti-apoptotic proteins reverses HIV latency. Debio 1143 (an IAP inhibitor)
inhibits anti-apoptotic proteins such as BIRC2, which activates NF-κB-mediated HIV reversal. HIV
latency can be markedly reversed in ART-treated BLT mice and human subjects when treated with
Debio 1143. On the other hand, Debio 1143, when combined with anti-PD1 monoclonal antibody
(mAb), can reduce HIV production and latency reversion in BLT humanized mice in most tissues
(spleen, lymph nodes, liver, lungs, and thymic organoids). The dual role of chemical agents in HIV
reversal/maintenance is thus intriguing and warrants further investigation.
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The tumor suppressor protein p53 can eliminate HIV-infected cells by enhancing the
expression of PTEN—a negative regulator of protein kinase B/AKT [63,151,152]. AKT
couples with PIP-3 of the PIK3 signaling pathway and activates itself, which inhibits pro-
apoptotic proteins while also coactivating anti-apoptotic proteins, such as pBad, Bcl-2, and
FOX01 transcription factor [63,153,154]. Triggering receptor expressed on myeloid cells 1
(TREM1) silencing in HIV-infected macrophages reduces anti-apoptotic protein expression,
increases pro-apoptotic signaling, and affects the survival of HIV-infected cells, leading to
disruption of the mitochondrial membrane potential, cytochrome-C release, and caspase-
9 cleavage [155]. HIV promotes latent cell survival in a TREM1-dependent fashion and
manipulates the anti-apoptotic Bcl-2 protein family [155]. Thus, these signaling components
can promote latent cell survival and HIV reservoir establishment. Interactions between
HIV-1 and the Bcl-2 protein family, as well as possible therapeutics, have been reviewed
elsewhere [156]. A detailed investigation of these pro- and anti-apoptotic proteins in latency
establishment and maintenance is essential to develop novel reversal approaches [63]. New
studies on the association between the apoptosis-related proteins and HIV latency may
lead to better approaches to controlling their expression levels or developing new drugs
to regulate their expression, either individually or in combination (e.g., Debio 1143 in
combination with anti-PD1 mAb) (Figure 4) [149]. Additionally, proteins associated with
cell-death mechanisms other than apoptosis during viral infection, such as autophagy
(LC3B, SQSTM1/p62), pyroptosis (Caspase1, 3), ferroptosis (GPX4), and necroptosis (RIP1,
3), should be investigated in order to understand their roles in HIV latency maintenance
and/or reversal [157–165].

2.5. Transcriptional and Genetic Factors in HIV Latency

In the CCL19 and IL-7 treated resting CD4 T latency model described above, an in-
crease in the levels of three microRNAs (miRs) such as miR98, miR4516, and miR7974, was
shown by next-generation sequencing, however inhibiting these miRNAs did not reverse
latency [79]. It is clear that inhibiting these miRNAs might not only reverse latency, and
more mechanisms/aspects are involved in it. However, the fact that these miRNAs were
upregulated in these latent HIV models should not be ignored, and thus further studies
of these noncoding genetic elements and other potential regulators seem to be essential
for understanding the mechanisms of HIV latency. Another miRNA known as TAR was
abundant in exosomal vesicles in supernatants collected from an in vitro infection model,
as well as serum, cerebrospinal fluid, blood plasma and even in saliva from patients under
ART and in serum from HIV-1 infected humanized mice [166–169]. During HIV latency,
the incorporated proviral genome is extremely low (only 1-5 copies), but TAR RNA copy
numbers range from 103 to 105 in patients undergoing ART suggesting that a true/complete
transcriptional latency is not always the case [167,170]. As described previously, TAR RNA
is essential for HIV Tat and protein kinase(s) RNA-activated (PKR) binding, however, the
TAR miRNA binds to TLR7/TLR8, but not PKR [167]. Coculturing exosomal vesicles
containing Tat, TAR RNA, TAR miRNA, and a newly found TAR-gag RNA induced IL-6,
TNFβ, NF-κB pathways, cytokine production, and overall cellular activation of the recip-
ient/neighbor cells, ultimately causing latency reversion [167,168,170,171]. These TAR
RNA-containing exosomes also induced cancer-cell proliferation and progression by affect-
ing expression of proto-oncogenes and TLR3 inducible genes, which reduced apoptosis in
neighboring latency-reversing cells by lowering Bim and CDK9 protein levels [166,172].
These exosomal vesicles also contain phosphorylated c-Src, which causes PI3K-mTOR-
AKT-mediated and P300/SRC-1, STAT3-activated latency reversion [171]. In addition,
high levels of NF-κB and P300 were observed in the nuclei of latent cells cocultured with
exosomal vesicles [171]. These vesicles can be targeted with antibodies, antibiotics, drugs,
transcription inhibitors, and ARTs to alter the ratio/amount of their individual components
and subsequently alter their roles in HIV latency upkeep/reversion [173,174]. For example,
ARTs (Indinacir and Emitricitabine), antibiotics (oxytetracycline, tetracycline, methacycline,
and demeclocycline), and even interferon treatments showed effects on the proteins in-
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volved in the endosomal sorting complex required for transport (ESCRT) pathway and
caused changes in TAR RNA levels and other contents of these exosomal vesicles [173]. In
addition, incorporation of a transcriptional inhibitor F07#13 in a mathematical model in
various cell types displayed potential to induce changes in HIV latency and LTR dynamics
and were different among the cell types used [174]. In a study that used a library of FDA-
approved drugs, HIV-1 proviral transcription was activated with febuxostat, eltrombopag,
and resveratrol, while mycophenolate inhibited HIV-1 proviral transcription, and these
transcriptional modulators exhibited different effects in different cell types (lymphoid
versus myeloid lineage) [175].

A newly identified QUECEL (quiescent effector cell latency) model used polarized
T cell subsets (Th1, Th2, Th17, and TREG) to mimic HIV latency in vitro [176]. This model
represents the escape of latently infected cells from cell-cycle checkpoints and showed a
significant reduction in cell-cycle-dependent cyclins D3 and B1, and restricted expression of
cell-activation markers such as CD69 and CD25, and the positive transcription elongation
factor P-TEFb (Figure 1) [176]. RNA-Seq and follow-up studies in quiescent cells suggests
that altered gene expression is associated with latent cell expansion, reinforcing the roles of
cyclin-dependent kinase pTEFb induction and CDK9 phosphorylation in latency reactiva-
tion and the anti-inflammatory molecule TGF-β elevation in latency maintenance [176–178].
Notably, the QUECEL model revealed alterations in regulatory machineries, indicating
that the c-Myc pathways are highly repressed and NF-κB is largely dispensable, whereas
nuclear factor of activated T cells (NFAT) and NFAT-dependent latency reactivation are
required for HIV latency [176]. NF-κB and NFAT binding at sites in the proviral enhancer
are calcium-dependent and positively regulate viral transcription as well as T cell activa-
tion, and the NF-κB, NFAT, when bound can recruit a histone acetyltransferase, p65, in
LTR regions to promote HIV transcription [179–184].

The HIV genome promoter regions U3 and R, which have a greater involvement
of the 5′-long terminal repeat (LTR) section and a minimal participation of the 3′-LTR
section, are responsible for controlling viral expression following different mechanisms
of transcriptional interference in these regions of the viral genome, such as promoter
occlusion and steric hindrance, because the viral DNA blocks the active and normal
transcriptional process within the region of its incorporation in the host-cell chromosome
[185–189]. The 5′-LTR region is very important in controlling transcription because the
interaction between negative elongation factor (NELF) and RNAPII can lead to premature
termination of transcription to limit the escape of the transcriptional complexes [185–191].
The mechanisms involved in controlling histone deacetylation and methylation, along
with the use of long noncoding RNAs (lncRNAs) to repress the latency reversal, has been
reviewed elsewhere [185]. Previous studies showed that a single nucleotide polymorphism
(SNP) in a genomic region with close proximity to the CCR5 coding region could control
HIV-1 associated coreceptor CCR5 mRNA expression via CCR5AS-lncRNA-mediated
sequestering of Raly, a protein that binds and degrades CCR5 mRNA [192]. The reduction
in CCR5-lncRNA failed to protect the CCR5-mRNA and resulted in a very low expression
of CCR5 on the cell surface [192]. The ability to manipulate the expressions of these
coreceptors during acute/chronic stages of viral infection could have an effect on HIV
latency. Another SNP (rs2027820) with a virtually perfect linkage disequilibrium with the
previous (rs1015164) SNP also controls the coreceptor CCR5 through differential binding of
activating transcription factor (ATF1) [192]. These studies imply that future research should
focus on such noncoding elements, polymorphic areas, SNPs, etc. The importance of the
genomic noncoding regions in HIV pathogenesis could be a new area of investigation,
which should focus on the role of these noncoding RNA sequences during latency initiation,
maintenance/upkeep, and reversal [192].
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Notably, the mechanisms associated with the host mRNA decay and the proteins
involved in active HIV infection are quite different from those involved in latent HIV infec-
tion. The host mRNA decay proteins UPF1, UPF2, SMG6, and Staufen1 were significantly
downregulated in monocyte-derived macrophages (MDMs) infected with HIV [193]. UPF2
and SMG6 downregulation via siRNA-mediated silencing enhances HIV gene expression;
however, Staufen1 silencing impairs HIV gene expression [193]. Further investigation of
the viral proteins involved in these cellular defense machineries is warranted and could
uncover more molecular and genetic targets needed for HIV cure.

3. Conclusions and Perspectives

A thorough understanding of the mechanisms of HIV latency is critical for the de-
velopment of clinical approaches and technologies for HIV latency reversal and cure.
Identifying novel pathways or effector molecules involved in latency maintenance and
reversal is appealing (Figure 1). New findings regarding pathways related to cell longevity
and immune-cell differentiation or regulatory kinase pathways and their control over
transcription factors and cytokine expression during HIV latency are crucial [78,79,112].
Therefore, the involvement of pro- and anti-apoptotic proteins and their interactions with
viral proteins in immune cells during latent HIV infection warrants further investigation.
In particular, new research should focus on the transcription initiation complex formation
and the recruitment of various transcription factors and associated cofactors to the LTR
promoter region of the proviral DNA, which may serve as molecular targets for a future
HIV cure.

Because HIV reservoirs often hide in immune-privileged locations such as lymphatic,
gut, or brain tissues, researchers have developed techniques using nanoparticle-packed
ART drugs (nanomedicines), including the base-editing CRISPR-Cas9 system that can di-
rectly target the provirus and eliminate HIV reservoirs [25]. These gene-editing techniques
in combination with latency reversal or reservoir reactivation effectors/molecules can be
employed to target and “chop off” the proviruses, and may lead to a breakthrough toward
HIV cure. Additionally, identification of novel latency-associated molecules may reveal
potential targets for drug and vaccine developments. This form of treatment or prevention,
if successful, will be easy to deliver and affordable in developing and developed countries.
Hence, a more in-depth investigation with a focus on the latency reversal pathways in
latently HIV-infected models is strongly encouraged.

Finally, the major obstacle in HIV-1 eradication is the multilayered mechanism of the
establishment of HIV latency, as well how as the latent reservoir rebounds and produces
infectious HIV virions in the setting of ART cessation. But even with successful control
of viral replication, ART-controlled HIV subjects exhibit multiple signs of DNA damage,
DNA repair inaccuracy, and mitochondrial dysfunction, leading to inflammaging, which
is a major driver for a wide range of clinical complications. These individuals show
minor to major complications involving various organ tissues such as lungs, liver, heart,
kidneys, and brain, leading to premature aging and degeneration. Thus, there is an urgent
need to develop a novel approach to eliminate HIV reservoirs even in the era of ART. To
achieve this, a better understanding of how latency is established and the factors associated
with HIV latency maintenance and reversal is essential. Additionally, a combination of
latency-reversal methods based on understanding the signaling pathways/molecules and
innovative gene-editing techniques targeting these components represent a potential leap
in HIV gene therapy. This review supports mainstream efforts for identifying molecular
pathway targets and therapeutic modalities related to latency upkeep and reversal to
cure HIV.



Cells 2021, 10, 475 15 of 23

Author Contributions: S.K. conceived, drafted, and prepared the manuscript; M.S., M.E.G., J.P.M.
and Z.Q.Y. contributed to editing, revising, and finalizing the manuscript. Z.Q.Y. was the corre-
sponding author and principal investigator for this project. All authors have read and agreed to the
published version of the manuscript

Funding: This work was supported by National Institutes of Health grants R01AI114748, R15AG050
456, R15AI143377, and R21AI138598; Veteran Administration Merit Review Awards 1I01BX002670
and 1I01BX004281; and Department of Defense Award PR170067 (to Z.Q.Y).

Acknowledgments: This work acknowledges the NIH AIDS Reagent Program for providing the
key reagents for studies related to this review. We appreciate the support, resources, and facilities
provided for this work from East Tennessee State University, James H. Quillen College of Medicine
(Department of Internal Medicine), James H. Quillen Veterans Affairs Medical Center, and the United
States Department of Veterans Affairs. The contents of this publication do not represent the views of
the Department of Veterans Affairs or the United States Government.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

ART Anti-retroviral therapy
HIV Human immunodeficiency virus
HSCs Hematopoietic stem cells
LRA Latency-reversing agents
HMG High-mobility group
TCR T cell receptor
LncRNA Long noncoding RNA
BLT Bone marrow, liver, and thymus
MDCs Monocyte-derived dendritic cells
TLRs Toll-like receptors
NLS Nuclear localization signal
NHEJ Nonhomologous end joining
PIR Pro-Trp-Trp-Pro motif interacting region
TOX Thymocyte selection-associated high-mobility group box
HMGB1 High-mobility group box 1
LPS lipopolysaccharides
mTOR Mammalian target of Rapamycin
JAK Janus kinase
STAT Signal transducer and activator of transcription
PD-1 Programmed cell death-1
QUECEL Quiescent effector cell latency
LTR Long terminal repeats
RNAPII RNA polymerase II
SNP Single nucleotide polymorphisms
TREM1 Triggering receptor expressed on myeloid cells 1
mAb Monoclonal antibody
dCA didehydro-Cortistatin A
NK Natural killer
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